The Seismic Assessment of Existing Buildings

Technical Guidelines for Engineering Assessments

Draft for Sector Briefings June 2016

Part C6: Structural Steel Buildings
This document is likely to be incorporated by reference to the Earthquake Prone Buildings (Chief Executive’s) Methodology to be developed under the provisions of the Building (Earthquake-prone Buildings) Amendment Act. It will also be endorsed by MBIE for use as guidance under section 175 of the Building Act to the extent that it assists practitioners and territorial authorities in complying with the Building Act.

Document Access

This document may be downloaded from www_EQ-Assess.org.nz in the following file segments:

1. Contents
2. Part A – Assessment Objectives and Principles
3. Part B – Initial Seismic Assessment
4. Part C – Detailed Seismic Assessment

Updates will be notified on the above website.

The document will be formally released in early 2017, when the final form of the regulations and EPB Methodology associated with the Building (Earthquake-prone Buildings) Amendment Act 2016 is established.

Document Management and Key Contact

This document is managed jointly by the Ministry of Business, Innovation and Employment, the Earthquake Commission, the New Zealand Society for Earthquake Engineering, the Structural Engineering Society and the New Zealand Geotechnical Society.

Please contact the New Zealand Society for Earthquake Engineering via questions_EQ-Assess.org.nz if you require further information on these draft Guidelines, or if you wish to provide feedback.
Acknowledgements

These Guidelines were prepared during the period 2014 to 2016 with extensive technical input from the following members of the Project Technical Group:

<table>
<thead>
<tr>
<th>Project Technical Group Chair</th>
<th>Other Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob Jury Beca</td>
<td>Graeme Beattie BRANZ</td>
</tr>
<tr>
<td>Task Group Leaders</td>
<td></td>
</tr>
<tr>
<td>Jitendra Bothara Miyamoto International</td>
<td>Alastair Cattanach Dunning Thornton Consultants</td>
</tr>
<tr>
<td>Adane Gebreyohannes Beca</td>
<td>Phil Clayton Beca</td>
</tr>
<tr>
<td>Nick Harwood Eliot Sinclair</td>
<td>Charles Clifton University of Auckland</td>
</tr>
<tr>
<td>Weng Yuen Kam Beca</td>
<td>John Hare Holmes Consulting Group</td>
</tr>
<tr>
<td>Dave McGuigan MBIE</td>
<td>Jason Ingham University of Auckland</td>
</tr>
<tr>
<td>Stuart Oliver Holmes Consulting Group</td>
<td>Stuart Palmer Tonkin & Taylor</td>
</tr>
<tr>
<td>Stefano Pampanin University of Canterbury</td>
<td>Lou Robinson Hadley & Robinson</td>
</tr>
</tbody>
</table>

Project Management was provided by Deane McNulty, and editorial support provided by Ann Cunninghame and Sandy Cole.

Oversight to the development of these Guidelines was provided by a Project Steering Group comprising:

<table>
<thead>
<tr>
<th>Dave Brunson (Chair) Kestrel Group</th>
<th>John Hare SESOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gavin Alexander NZ Geotechnical Society</td>
<td>Quincy Ma NZSEE</td>
</tr>
<tr>
<td>Stephen Cody Wellington City Council</td>
<td>Richard Smith EQC</td>
</tr>
<tr>
<td>Jeff Farrell Whakatane District Council</td>
<td>Mike Stannard MBIE</td>
</tr>
<tr>
<td>John Gardiner MBIE</td>
<td>Frances Sullivan Local Government NZ</td>
</tr>
</tbody>
</table>

Funding for the development of these Guidelines was provided by the Ministry of Business, Innovation and Employment and the Earthquake Commission.
Contents

C6. Structural Steel Buildings ...C6-1

C6.1 General..C6-1
C6.1.1 Scope and outline of this section ..C6-1
C6.1.2 Useful publications ..C6-1
C6.1.3 Definitions and abbreviations ..C6-2
C6.1.4 Notation ..C6-3

C6.2 Factors Affecting the Seismic Performance of Steel BuildingsC6-5
C6.2.1 General..C6-5
C6.2.2 Imperfections and fabrication process ...C6-5
C6.2.3 Load paths through connections ..C6-6
C6.2.4 Building condition (deterioration over time) ..C6-6
C6.2.5 Member restraints ...C6-6
C6.2.6 P-delta effects ..C6-7
C6.2.7 Slab participation ...C6-7
C6.2.8 Building age (materials and design) ...C6-8

C6.3 Observed Behaviour of Steel Buildings in Past EarthquakesC6-10
C6.3.1 Overall performance ..C6-10
C6.3.2 Moment resisting frame buildings ..C6-10
C6.3.3 Braced steel frame buildings ..C6-12
C6.3.4 Portal frame buildings ..C6-14

C6.4 Material Properties and Testing ..C6-15
C6.4.1 General..C6-15
C6.4.2 Identifying the building materials: are they cast iron, wrought iron or steel? ...C6-17
C6.4.3 Cast iron and wrought iron: nominal strengthsC6-17
C6.4.4 Structural steel: historical grades and nominal strengthsC6-17
C6.4.5 Strength modification factors for structural steelC6-18
C6.4.6 Test methods to determine the mechanical properties of structural steel ..C6-18
C6.4.7 Nominal yield and nominal tensile strengths of fasteners and weld metals ..C6-21

C6.5 Component Capacities ..C6-21
C6.5.1 General..C6-21
C6.5.2 Beams ...C6-22
C6.5.3 Columns ..C6-24
C6.5.4 Concrete encased steel beams and columnsC6-26
C6.5.5 Braces ..C6-27
C6.5.6 Active links of eccentrically braced framesC6-29

C6.6 Connection Capabilities ...C6-29
C6.6.1 General..C6-29
C6.6.2 Strength reduction factors ..C6-30
C6.6.3 Bolted and riveted connections ..C6-31
C6.6.4 Welded connections ..C6-38

C6.7 Global Capacity ...C6-41
C6.7.1 Assumptions ...C6-41
C6.7.2 Global capacity of steel moment resisting frames C6-42
C6.7.3 Global capacity of concentrically braced steel buildings C6-46

C6.8 Assessment of Steel Framed Buildings ... C6-49
C6.8.1 General .. C6-49
C6.8.2 Stiffness of frames .. C6-50
C6.8.3 Maximum seismic actions ... C6-50
C6.8.4 Maximum actions on connections ... C6-51
C6.8.5 Actions on concentrically braced frames C6-52
C6.8.6 Concurrency effects ... C6-53

References .. C6-54

Appendix C6A : Typical Pre-1976 Steel Building Systems Used in New Zealand ... C6-1
Appendix C6B : Historical Steel Grades and Nominal Strengths C6-6
C6. Structural Steel Buildings

C6.1 General

C6.1.1 Scope and outline of this section

This section provides guidance on the detailed seismic assessment of existing steel framed buildings. It does not address earthquake damaged steel framed buildings or the retrofitting of existing buildings.

The following topics are addressed in Section C6:

- Factors affecting the seismic performance of steel buildings and observed behaviour of steel buildings in past earthquakes (Sections C6.2 and C6.3)
- Structural steel material properties and testing (Section C6.4)
- Assessment of member and connection probable strength and rotation capacities (Section C6.5 and C6.6)
- Philosophy and assumptions for the evaluation of existing steel seismic-resisting systems, including the evaluation procedure for steel moment resisting frames (MRFs), steel MRFs with infill panels, and braced frame buildings (Sections C6.7 and C6.8).

C6.1.2 Useful publications

The following publications will be of particular assistance to designers making seismic assessment of steel framed buildings.

ASCE 41-13 Seismic Evaluation and Retrofit of Existing Buildings (ASCE, 2014)
Seismic Design Procedures for Steel Structures including Tips on Seismic Design of Steel Structures (Feeney and Clifton, 2001)
FEMA 273, NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA, 1997)
FEMA 356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FEMA, 2000)
Determination of the Post-Earthquake Capacity of an Eccentrically Braced Frame Seismic Resisting System (Clifton and Ferguson, 2015)
C6.1.3 Definitions and abbreviations

<table>
<thead>
<tr>
<th>Category 1 buildings</th>
<th>Fully ductile buildings ($\mu > 3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 2 buildings</td>
<td>Limited ductile buildings ($1.25 < \mu \leq 3$)</td>
</tr>
<tr>
<td>Category 3 buildings</td>
<td>Nominally ductile buildings ($1 < \mu \leq 1.25$)</td>
</tr>
<tr>
<td>Category 4 buildings</td>
<td>Elastic buildings ($\mu = 1$)</td>
</tr>
<tr>
<td>Concentrically braced frame (CBF)</td>
<td>A braced frame where the members are subjected primarily to axial forces</td>
</tr>
<tr>
<td>Connection</td>
<td>The entire assemblage of connection components and connectors where two members intersect</td>
</tr>
<tr>
<td>Connector</td>
<td>An element of a connection that transfers forces from one member or connection component to another (e.g. bolts, rivets and welds)</td>
</tr>
<tr>
<td>Eccentrically braced frame (EBF)</td>
<td>A braced frame in which at least one end of each brace frames only into a beam in such a way that at least one stable, deformable link beam is formed in each beam if the elastic limit of the frame is exceeded. In this event, energy is dissipated through shear and/or flexural yielding in the link beams (termed the active link regions) whereas the bracing members and columns shall remain essentially elastic.</td>
</tr>
<tr>
<td>Full restraint against lateral buckling (FLR)</td>
<td>Restraint that effectively prevents lateral deflection and twist of a cross section of a member</td>
</tr>
<tr>
<td>Lateral force-resisting system</td>
<td>The part of a structural system that provides resistance to earthquake induced forces</td>
</tr>
<tr>
<td>Lateral restraint</td>
<td>An element that prevents lateral movement of the critical flange of a member</td>
</tr>
<tr>
<td>Local buckling</td>
<td>A local instability involving a change of shape of the member cross section along a relatively short length of member under compression</td>
</tr>
<tr>
<td>Moment resisting frame (MRF)</td>
<td>A structural system that resists earthquake induced forces principally through the flexural stiffness and strength of its members and connections</td>
</tr>
<tr>
<td>Plate slenderness</td>
<td>The ratio of the critical unsupported width of a plate to the average plate thickness</td>
</tr>
<tr>
<td>Primary seismic-resisting member</td>
<td>An energy dissipating member of a seismic-resisting system</td>
</tr>
<tr>
<td>Probable capacity</td>
<td>The theoretical capacity of a member or a connection calculated using mean material strengths and the appropriate strength reduction coefficient</td>
</tr>
<tr>
<td>Overstrength</td>
<td>The maximum strength that a member or a connection can develop due to variations in material strengths, strength gain due to strain hardening, and the contribution of floor slab, if applicable</td>
</tr>
<tr>
<td>Secondary seismic-resisting member</td>
<td>A non-energy dissipating member of a seismic-resisting system</td>
</tr>
<tr>
<td>Segment</td>
<td>The length between adjacent cross sections which are fully, partially or laterally restrained, or the length between an unrestrained end and the adjacent cross section which is fully or partially restrained</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>The probable ultimate strength in tension</td>
</tr>
<tr>
<td>Yielding region</td>
<td>The region of a member which is anticipated to yield under earthquake induced forces</td>
</tr>
</tbody>
</table>
C6.1.4 Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g</td>
<td>Gross area of the cross section</td>
</tr>
<tr>
<td>A_n</td>
<td>Net area of the cross section</td>
</tr>
<tr>
<td>A_o</td>
<td>Plain shank area of a bolt</td>
</tr>
<tr>
<td>A_s</td>
<td>Tensile stress area</td>
</tr>
<tr>
<td>A_w</td>
<td>Area of a web</td>
</tr>
<tr>
<td>B_b</td>
<td>Beam flange width</td>
</tr>
<tr>
<td>B_c</td>
<td>Column flange width</td>
</tr>
<tr>
<td>b_{eff}</td>
<td>Effective beam flange width</td>
</tr>
<tr>
<td>d</td>
<td>Depth of a steel section</td>
</tr>
<tr>
<td>d_b</td>
<td>Depth of a beam section</td>
</tr>
<tr>
<td>d_c</td>
<td>Depth of a column section</td>
</tr>
<tr>
<td>d_p</td>
<td>Depth of a web</td>
</tr>
<tr>
<td>e</td>
<td>Clear length of an active link</td>
</tr>
<tr>
<td>f</td>
<td>Residual capacity factor</td>
</tr>
<tr>
<td>f_{yb}</td>
<td>Yield strength of a beam flange</td>
</tr>
<tr>
<td>f_{yc}</td>
<td>Yield strength of a column flange</td>
</tr>
<tr>
<td>f_u</td>
<td>Tensile strength</td>
</tr>
<tr>
<td>f_{af}</td>
<td>Tensile strength of a rivet</td>
</tr>
<tr>
<td>f_{uw}</td>
<td>Tensile strength of weld metal</td>
</tr>
<tr>
<td>f_y</td>
<td>Yield strength</td>
</tr>
<tr>
<td>f_{yw}</td>
<td>Yield strength of a web</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus of elasticity for steel, 80 000 MPa</td>
</tr>
<tr>
<td>H_v</td>
<td>Vickers Hardness</td>
</tr>
<tr>
<td>I_b</td>
<td>Second moment of area of a beam</td>
</tr>
<tr>
<td>I_c</td>
<td>Second moment of area of a column</td>
</tr>
<tr>
<td>k_e</td>
<td>Member effective length factor</td>
</tr>
<tr>
<td>k_f</td>
<td>Form factor for members subject to axial compression</td>
</tr>
<tr>
<td>k_r</td>
<td>Reduction factor for lap connections</td>
</tr>
<tr>
<td>k_{te}</td>
<td>Correction factor for distribution of stresses in a tension member</td>
</tr>
<tr>
<td>L</td>
<td>Member length</td>
</tr>
<tr>
<td>L_b</td>
<td>Clear span of beam</td>
</tr>
<tr>
<td>L_c</td>
<td>Clear length of column</td>
</tr>
<tr>
<td>L_j</td>
<td>Length of a bolted lap-splice connection</td>
</tr>
<tr>
<td>Symbol</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>L_r</td>
<td>Length of a restraining member</td>
</tr>
<tr>
<td>M_b</td>
<td>Member flexural capacity</td>
</tr>
<tr>
<td>M_s</td>
<td>Section flexural capacity</td>
</tr>
<tr>
<td>M^*</td>
<td>Bending moment demand</td>
</tr>
<tr>
<td>n</td>
<td>Number of connectors</td>
</tr>
<tr>
<td>N_c</td>
<td>Probable member capacity in compression</td>
</tr>
<tr>
<td>N_s</td>
<td>Section capacity of a compression member</td>
</tr>
<tr>
<td>N_t</td>
<td>Section capacity of a tension member</td>
</tr>
<tr>
<td>N_{tf}</td>
<td>Nominal tension capacity of a connector</td>
</tr>
<tr>
<td>N^*</td>
<td>Axial force demand, compressive or tensile</td>
</tr>
<tr>
<td>N_c^*</td>
<td>Axial force demand, compressive</td>
</tr>
<tr>
<td>N_g^*</td>
<td>Axial force demand due to gravity load</td>
</tr>
<tr>
<td>n_x</td>
<td>The number of connector shear planes intercepting a shear plane</td>
</tr>
<tr>
<td>N_{tf}^*</td>
<td>Tensile force on a bolt</td>
</tr>
<tr>
<td>N_{w}^*</td>
<td>Axial force acting on a web panel</td>
</tr>
<tr>
<td>r</td>
<td>Radius of gyration; or transition radius; or the root radius of a section</td>
</tr>
<tr>
<td>S</td>
<td>Plastic section modulus</td>
</tr>
<tr>
<td>t</td>
<td>Thickness</td>
</tr>
<tr>
<td>t_b</td>
<td>Beam web thickness</td>
</tr>
<tr>
<td>T_b</td>
<td>Beam flange thickness</td>
</tr>
<tr>
<td>t_c</td>
<td>Column web thickness</td>
</tr>
<tr>
<td>T_c</td>
<td>Column flange thickness</td>
</tr>
<tr>
<td>t_w</td>
<td>Thickness of a web</td>
</tr>
<tr>
<td>V_f</td>
<td>Shear capacity of a bolt or rivet</td>
</tr>
<tr>
<td>V_w</td>
<td>Shear capacity of a web</td>
</tr>
<tr>
<td>V_{w}^*</td>
<td>Shear yield capacity of a web; or nominal shear capacity of a plug or slot weld</td>
</tr>
<tr>
<td>V^*</td>
<td>Design shear force</td>
</tr>
<tr>
<td>V_{w}^*</td>
<td>Design shear force acting on a web panel; or design shear force on a plug or slot weld</td>
</tr>
<tr>
<td>v_{w}</td>
<td>Nominal capacity of a fillet weld per unit length</td>
</tr>
<tr>
<td>v_{w}^*</td>
<td>Design force per unit length on a fillet weld</td>
</tr>
<tr>
<td>γ_p</td>
<td>Plastic rotation of an active link</td>
</tr>
<tr>
<td>γ_y</td>
<td>Yield rotation of an active link</td>
</tr>
<tr>
<td>γ_u</td>
<td>Ultimate rotation of an active link</td>
</tr>
<tr>
<td>Δ_c</td>
<td>Displacement at buckling</td>
</tr>
<tr>
<td>Δ_p</td>
<td>Plastic displacement</td>
</tr>
</tbody>
</table>
C6.2 Factors Affecting the Seismic Performance of Steel Buildings

C6.2.1 General

Structural steel members are generally considered capable of dissipating significant amounts of energy when subjected to inelastic demands as the base material is inherently ductile. Because of this expected ductile response of the members, steel buildings are considered suitable for regions of high seismicity. However, the seismic performance of steel buildings can be affected by factors such as:

- imperfections and the fabrication process
- load paths through connections
- building condition (deterioration over time)
- member restraints
- P-delta effects
- slab participation, and
- building age (materials and design procedures).

Each of these factors is discussed below. Also refer to Appendix C6A for general guidance on the typical pre-1976 steel building systems used in New Zealand.

C6.2.2 Imperfections and fabrication process

Imperfections in structural steel generally cause stress concentrations that may result in a sudden loss in strength and hence a poor seismic performance. Imperfections may be created during fabrication processes, such as welding, or may be already present in the base material. It is rare for fabrication imperfections to be sufficiently severe in themselves to cause building failures during earthquakes.

Note:

The weld materials used and fabrication processes adopted were some of the minor factors that led to brittle fractures of welded connections in over 200 buildings during the 1994 earthquake in Northridge, California.
C6.2.3 Load paths through connections

Inadequate load paths through connections is the most common cause of local failures in steel buildings during earthquakes. Inadequate load paths through connections was the principal cause of welded connections failures during the 1994 Northridge earthquake (refer to Section C6.3.2.1 for more details).

Inadequate load paths through connections was also considered to be the principal cause of most local failures in multi-storey steel buildings in the 2010/2011 Canterbury earthquake sequence.

Alert:

When undertaking a seismic assessment of a steel framed building, assessing load paths through connections is likely to be the most important aspect of the evaluation process.

C6.2.4 Building condition (deterioration over time)

Deterioration due to environmental effects such as corrosion may have a major effect on the seismic performance of steel framed buildings. When exposed to aggressive environments that facilitate corrosion, structural steel members/connections may sustain significant deterioration such as reduction in member strength due to loss of base material to oxidation. The ductile capacity of corroded members may be significantly reduced if the members sustain localised corrosion as the zone of yielding will be limited to the reduced cross section.

Column bases and hold down bolts are the elements most prone to severe localised loss of material due to long term corrosion. There were several reported failures of industrial structural systems in the 1987 Edgecumbe earthquake due to column failures at the base from corrosion. In addition, reduction in member strengths due to corrosion was reported as one of the main factors contributing to failure of braces during this earthquake (Butcher et al., 1998).

Note:

A condition assessment, particularly of pre-1976 steel framed buildings, is recommended as part of the DSA. Refer Section C6.4 for more details.

C6.2.5 Member restraints

Structural steel members are made up of plates that are hot rolled, cold formed, welded, bolted, or riveted together. The slenderness and the boundary conditions of the constituting plates may significantly affect the seismic performance of a steel member by limiting the local and lateral torsional buckling capacity of the member.

Local buckling of steel members occurs due to plate slenderness, while lateral torsional buckling of steel members occurs when there is inadequate lateral bracing of compression flanges. The elastic resistance to lateral buckling of a steel member is influenced by several factors such as: unbraced length of the compression flange, geometric and material properties of the member, and moment gradient along the member.
Guidance provided in NZS 3404:1997 and guidelines such as those outlined in Clifton (2009) and Fussell (2009) provide methods to determine bracing required against lateral torsional buckling and plate slenderness limits to ensure local and lateral buckling of steel members do not occur prematurely.

Experimental evidences indicate that local plate buckling generally results in a gradual degradation of strength and stiffness in compact cross sections, while lateral torsional buckling causes a rapid loss of strength and stiffness (Gupta and Krawinkler, 1999). Local buckling of slender members causes a rapid loss of section and hence member capacity.

C6.2.6 P-delta effects

Steel MRF buildings are generally more flexible than other building types and hence are subjected to relatively large lateral displacement demands. Therefore, gravity induced loads acting on a laterally displaced building (P-delta effects) can be pronounced on flexible steel MRFs.

Alert:

When large ductility demands that may result in significant deterioration in member strength and stiffness are likely, P-delta effects will be worsened. In such situations, P-delta effects need careful consideration.

C6.2.7 Slab participation

Typically, floor slabs have been constructed with no separation from columns. This causes the slab to contribute to the seismic capacity of framed buildings. Slab participation results in development of increased seismic demands in columns due to increased beam flexural overstrength capacity.

Slab participation may induce column flexural yielding, column shear failure or beam shear failure modes in steel MRFs, depending on the relative strength of the members and the connections. Slab participation may also cause damage to floor slabs and compromise the capacity of the floor system to transfer seismic demands to the lateral force resisting members; although the evidence from the 2010/2011 Canterbury earthquake sequence is that the influence on composite slabs (concrete on steel deck on steel or concrete supporting beams) is minimal.

Alert:

When the connections of a steel framed building are semi-rigid, slab participation may considerably increase the stiffness and strength of the connections (Roeder et al., 1994). Slab participation may be beneficial in such buildings if it does not result in localised column failures.
C6.2.8 Building age (materials and design)

C6.2.8.1 Materials

The earliest steel framed buildings in New Zealand are believed to have been constructed in the 1880s, with steel being the preferred ferrous material for structural members from then onwards.

Cast iron columns are found in some of the oldest New Zealand buildings and, until the early 1900s, were often used as gravity carrying elements. Cast iron is a low-strength and brittle material not suitable for use in a seismic-resisting system or in a gravity system that is required to sustain significant deformations. The tensile strength of cast iron is significantly less than its compressive strength due to the presence of voids and cracks within the iron matrix (Rondal and Rasmussen, 2003). The consequence of these non-ductile characteristics is that the performance of cast iron columns is likely to be poor if they are part of the lateral force resisting system and/or are subjected to significant lateral displacements.

Cast iron columns can be dependably retained in an existing building if they are used as a propped gravity column, with the supports for the beams assessed and reinforced if necessary (e.g. with steel bands) to avoid local fracture under seismic-induced rotations. However, the strength of a cast iron column cannot be determined using the provisions for steel columns in these guidelines as cast iron has a different stress-strain relationship to steel. Guidance on the assessment of cast iron columns can be found in Bussell (1997) and Rondal and Rasmussen (2003).

Wrought iron was also used to a limited extent for structural members in early New Zealand buildings. However, its use largely ended around the 1880s and 1890s as these items were costly to manufacture. The principal disadvantage of wrought iron as a building material was the small quantities made in each production item (bloom), being only 20-50 kg. This meant that the use of wrought iron in structural members required many elements to be joined by rivets.

Wrought iron has good compressive and tensile strength, good ductility, and good corrosion resistance. The performance of wrought iron members is considered comparable to that of steel members from the same era.

C6.2.8.2 Design

Despite their apparent advantage over other building types of the same era such as unreinforced masonry buildings, steel buildings designed before the introduction of NZS 4203:1976 suffer from the fundamental drawback of being not designed according to capacity design procedures.

Note:

Pre-1976 design methods generally assumed an elastic response, with no consideration given to likely failure modes and with no ductile detailing requirements to ensure that potential plastic hinge regions can dependably accommodate earthquake induced ductility demands. In addition, no attention is generally given to load paths through connections under inelastic response. Structural members of these buildings that should remain elastic
to avoid undesirable failure mechanisms may not have the capacity to resist overstrength actions originating from potential plastic hinge regions and slab participation. Additionally, structural members and connections that are provided to resist gravity induced loads may not have the capacity to accommodate earthquake induced displacement demands; although most early gravity systems with bolted or riveted connections are considered to have high ductility capacity, but very limited strength.

The pattern of damage observed during the 1995 earthquake in Kobe, Japan indicates that three factors play a significant role in ensuring a good overall seismic performance of a steel frame building not designed following the capacity design method. These factors are as follows:

- The beam-column connections of the frames of a building should be able to retain their shear and axial force carrying capacity when the connections are sustaining flexural actions from earthquake demands.
- The inelastic demand in the columns should be kept to a minimum. This demand is principally due to local buckling or crippling failure, and also to general plastic hinge formation.
- The inelastic response of the building should be essentially symmetric in nature and not lead to a progressive movement of the building in one direction only.

Note:
Details of the damage sustained during the Kobe earthquake are provided in reconnaissance reports such as that by Park et al. (1995).

In buildings constructed before the 1950s the structural members of steel frames are usually encased in lightly reinforced concrete as fire protection (refer to Figure C6.1). The reinforcement of the encasement is often inadequate and poorly detailed (Bruneau and Bisson, 2000), which results in a significant increase in stiffness and a relatively modest increase in strength of the encased members.

Spalling of the encasement concrete, particularly in the end regions of members, has the potential to increase the nonlinear demands in the steel members if they are required to be loaded beyond yield.
Even older steel framed buildings, constructed before the 1936 New Zealand standard model building by-law introduced seismic design requirements, typically contain beams that are deeper than the columns. The frames of these buildings generally contain simple and semi-rigid riveted connections that have a modest flexural capacity. In addition, these connections generally exhibit poor energy dissipation capability with lack of adequate strength and stiffness and may serve as the weakest link during inelastic earthquake demands. However, the seismic performance of similar structures dating back to the 1906 San Francisco earthquake has generally been high.

C6.3 Observed Behaviour of Steel Buildings in Past Earthquakes

C6.3.1 Overall performance

Steel buildings have been observed to perform generally well during major international earthquakes. The only steel framed buildings that were reported to have collapsed were during the 1985 Michoacan, Mexico earthquake. However, these collapses were attributed to factors such as resonance and local soil conditions. The collapsed buildings were between 10 and 15 storeys high, which were in the resonance range of the strongly harmonic earthquake that struck Mexico City. Another source of collapse was very light welds between built-up members that “unzipped” during the earthquake.

Consequently, steel framed buildings have been generally regarded as ductile and resilient against earthquake induced collapse. However, the significant damage observed during the Northridge (1994) and Kobe, Japan (1995) earthquakes emphasises the vulnerability of even recently constructed steel framed buildings and the need for attention to load paths.

C6.3.2 Moment resisting frame buildings

C6.3.2.1 Performance in the 1994 Northridge earthquake

The 1994 Northridge earthquake caused considerable damage to steel MRFs that had been designed on the basis that they would behave in a ductile manner. The rigidly welded connections of these frames were observed to have fractured at low levels of ductility demands.

Although hundreds of MRF buildings suffered this unexpected overload form of connection damage, most of the buildings displayed no visible signs of distress after the earthquake (such as permanent lateral deflections); nor was there significant damage to non-structural components and contents. However, the capacity of these buildings to resist further earthquake induced demands was significantly compromised and costly repairs were required.

The main reason for the unexpectedly poor performance was the inability of the load paths between the beams and the columns of the frames to transfer actions generated by plastically responding beams into the columns. The inadequacy of the load path caused fractures of the beam flange to column flange connections. The majority of the fractures were observed to occur at the bottom beam-column flange connections due to slab participation. In some instances these bottom fractures were even observed to trigger web connection failures (Krawinkler, 1995). Refer to Figure C6.2.
Note:
Details of the damage sustained during the Northridge earthquake have been widely reported in reconnaissance reports such as that by Norton et al. (1994).

Figure C6.2: Welded connection fracture modes observed during the 1994 Northridge earthquake (Krawinkler, 1995)

The inadequacy of the load paths of “Pre-Northridge” connections meant that even the best fabricated beam to column connections were not able to develop plastic hinges in beams that exceeded a depth of approximately 360 mm. However, the following factors were considered to have minor contributions to the failures of “Pre-Northridge” connections (FEMA 355E, 2000):

- The welding practice was such that bottom flange weld passes were interrupted at beam webs, resulting in weld defects that served as crack initiators.
- The configuration of the connections made detection of hidden bottom weld defects difficult, particularly at the beam webs.
- The filler metal employed was typically developed for high deposition rate welding and had very low notch toughness as a result.
- There was use of large size beams in buildings that had few lateral force resisting frames. The deeper the beam, the greater the web contribution to flexural strength and therefore the greater the likelihood of ductile overload of the beam flange to column flange connection. The use of large size beams also meant higher deposition rate large welds which were more prone to fractures than small size welds (Krawinkler, 1995).
- The mean yield strength of members fabricated in the 1980s was observed to be generally significantly greater than the nominal values.
- The geometry of weld access holes was, in some cases, observed to hinder ease of filler metal deposition and weld inspections.
Immediately after the Northridge Earthquake, HERA and the University of Auckland looked at the possibility of similar types of failures in New Zealand buildings and found no examples of this type of construction. A series of large scale beam/column inelastic cyclic tests were performed on typical New Zealand type MRF connections which showed that they were not vulnerable to this type of failure (Butterworth, 1995).

C6.3.2.2 Performance in the 2010-11 Canterbury earthquake sequence

During the Canterbury earthquake sequence of 2010/11 no significant damage appeared to have been sustained by any post-1976 MRFs. Minor panel zone yielding of an MRF (refer to Figure C6.3) was observed in a 12 storey, predominantly eccentrically braced frame (EBF) building.

Provided the beams adjacent to the panel zone did not exhibit any signs of yielding, the yielding of the panel zone was not expected. The yielding of this panel zone was considered to result from the combination of elevated levels of compression force in the columns due to high vertical ground accelerations and the expected and significant bending demands imposed on the adjoining beams.

Figure C6.3: Panel zone of an MRF showing minor inelastic action (G.C. Clifton)

C6.3.3 Braced steel frame buildings

C6.3.3.1 Eccentrically braced frame buildings

EBF multi-storey buildings generally performed very well during the Canterbury earthquake sequence. Generally, the observed damage was minor and limited principally to non-structural items. A 22 storey EBF building required replacement of seven active links due to nonlinear overload and, in one case, brittle fracture (refer to Figure C6.4(a)). Another 35 active links were replaced due to the steel having unacceptably low Charpy impact energy. More active links would have been expected to be replaced as the magnitude of the excitation during the February 22, 2011 earthquake was such that it was significantly above the 500 year return design spectrum of NZS 1170.5: 2004 that is the basis for ULS design of typical new buildings. One 12 storey EBF building was returned to service with no structural repairs needed. It was the only multi-storey building in the Christchurch CBD for which this was the case, including base isolated structures.
The good performance of multi-storey EBF buildings in the Canterbury earthquake sequence can be attributed to:

- the significant effects of soil-foundation-structure-interaction (on reducing the seismic demand on the superstructure of these relatively heavy multi-storey buildings built on soft soil (Storie et al., 2014))
- factors contributing to overstrength in steel frames such as actual yield strengths significantly exceeding nominal values, modelling assumptions, etc
- the contribution of the composite floor slab action to the shear resistance that was not allowed for in the design of the frames, and
- the contribution of solid partition walls and non-structural items.

A fractured active link of the 12 storey EBF building is presented in Figure C6.4 (a). This active link appeared to have undergone at least one full cycle of web panel yielding prior to fracture. The fracture appeared to have propagated from one top corner across the active link region and resulted in significant residual deformations. Detailed evaluations of this and other links in the EBF braced bay concerned showed that the Charpy impact energy of this steel was well below that specified by NZS 3404:1997, with the material having a transition temperature of around 12°C. This particular link also had a shear stud welded to the flange immediately above the left hand visible stiffener, which is believed to have acted as a crack initiation site.

Fractures of two active links in a low-rise EBF building (refer to Figure C6.4(b)) were attributed to detailing/fabrication errors. The flanges of the two braces were observed to be offset from the stiffeners of the active links. The offset lead to fracture of unstiffened collector beam flanges located between the active link stiffeners and the flanges of braces.

C6.3.3.2 Concentrically braced frame buildings

Observations made during the 1995 Kobe earthquake have reinforced the expectation that concentrically braced frames (CBFs) that are not designed following the capacity design method are not likely to perform as intended in the event of an earthquake.

In New Zealand, non-capacity designed (pre-1976) CBFs are typically X-braced, while very few are believed to be V-braced. Pre-1976 CBFs in New Zealand were typically
designed to resist lower levels of lateral forces than required by NZS 1170.5:2004. Several such CBF buildings in Kobe were reported to sustain buckled braces or failed connections during the earthquake. However, none of these buildings were reported to have collapsed (Clifton, 1996).

Most CBF buildings performed as expected during the 1994 Northridge earthquake, but with no collapses reported. Similar to the connection weld fractures of MRFs discussed in Section C6.3.2, fractures of brace-collector beam and column-base plate welded connections were prevalent. In addition, excessive local buckling of thin-walled tubular braces of CBFs was observed (Krawinkler, 1995).

(a) A poorly detailed connection
(b) A buckled brace
(c) A fractured connection

Figure C6.5: Damaged CBFs in a single-storey car park building during the February 22, 2011 Christchurch earthquake (M. Bruneau)

Significant damage to a single-storey CBF building was observed during the Canterbury earthquake sequence (refer to Figure C6.5). However, the connections of the CBFs to the columns appeared to have been detailed poorly. One of the CBFs appeared to have been connected to a column that had a non-ductile reinforced concrete extension (refer to Figure C6.5 (a)), while the welded connection of the second CBF did not appear to have been designed by following capacity design principles (refer to Figure C6.5 (b)).

C6.3.4 Portal frame buildings

Most portal frame buildings performed generally well during the Canterbury earthquake sequence. Observed damage was mainly attributed to ground instability or limited to failure of bracing systems, while frame moment connections exhibited no visible signs of damage.

Many of the portal frame buildings in Christchurch were industrial facilities, which were designed to resist high wind induced forces which were typically the controlling design case. These buildings typically have light roofs that are braced using light rod braces with proprietary end fittings. A few fractures and thread stripping of the proprietary brace connectors were reported following the February 22, 2011 earthquake (refer to Figure C6.6).
Alert:
Tension-only bracings of portal frame buildings should be considered to have an elastic response unless the connections (including proprietary connections) are able to resist the maximum actions outlined in Section C6.8.4.

Figure C6.6: Proprietary brace connectors that failed during the February 22, 2011 Christchurch earthquake (M. Bruneau)

Figure C6.7: Roof bracing that failed during the February 22, 2011 Christchurch earthquake (M. Bruneau)

In one building, failure of a roof bracing was observed following the February 22, 2011 earthquake (refer to Figure C6.7). This failure was considered to be a result of excessive movements of tilt up panels that were likely to have been caused by ground liquefaction (Clifton et al., 2011).

C6.4 Material Properties and Testing

C6.4.1 General

Mechanical properties of existing structural steel framed buildings may be determined from:

- drawings, specifications or other construction records
- historical steel grades and nominal strengths, and/or
- steel material tests.

The mechanical properties of structural steelwork are best determined from original construction records supplemented by laboratory or in-situ tests of selected critical components to confirm the expected steel grade.
If the source of a steelwork can be confirmed from the designations on original construction records, but the steel grade is not identified and testing is not practicable, default mechanical properties corresponding to the source and age of the steelwork can be adopted from those outlined in historical specifications. Refer to Appendix C6B for typical sources of historical New Zealand structural steelwork.

In the absence of construction records, the source of a structural steelwork can be identified from mill markings that are generally present on historical structural steel sections and from section geometric properties contained in literature on historical structural steelwork (e.g. Bates (1991), Bussell (1997), and Ferris (1954)).

Alert:
Older steelwork exhibits greater variability than modern steelwork. Accordingly, a minimum degree of non-destructive testing is recommended to gain assurance of the mechanical properties for the members in the primary structure. This is particularly the case when the steel is “unidentified”.

If the steelwork cannot be identified from construction records, mill markings or section geometric properties, the default yield strengths for “unidentified steel” provided in Appendix C6B may be adopted.

If tensile tests are undertaken, default strengths corresponding to the grade, potential source and age of the steelwork should be adopted from Appendix C6B.

“Unidentified steel” members may exhibit non-ductile behaviour if a combination of all the following conditions are present and potential brittle failure is not ruled out through physical tests:
- from an assessment of the strength hierarchy of the building, the “unidentified steel” members are the weakest links, not the connections, and
- the “unidentified steel” members are located in an external steelwork or on the cold side of the building envelope so that the members could be below their transition temperature at the time of an earthquake, and
- a notch, a significant crack, or any stress raiser is present in a critical location.

If all these conditions contributing to potential member brittle responses are present, fracture toughness tests should be undertaken on selected critical members as per Section C6.4.6 to rule out potential brittle responses.

Alert:
Another key concern with “unidentified steel” members is the undefined upper bound on yield strength, which may be significantly greater than the characteristic values. Primary members of unknown origin may develop strengths that are significantly higher than allowed for using overstrength factors. Large member overstrengths may lead to overloading other aspects of the structure.
C6.4.2 Identifying the building materials: are they cast iron, wrought iron or steel?

As outlined in Section C6.2.8.1 the earliest steel framed buildings in New Zealand are believed to have been constructed in the 1880s, and steel was the preferred ferrous material for structural members from then onwards. Cast iron and, to a lesser extent, wrought iron, were also used in New Zealand buildings before the early 1900s. Identifying the building materials and their age is an important aspect of the seismic assessment process.

Cast iron

The use of cast iron from the 1880s until its discontinuance around 1910 was limited to columns. Cast iron columns would have been used typically for gravity load carrying purposes. These columns are typically “chunky” with thick sections, often having ornate or complex profiles (fluted, plain hollow circular, or cruciform shaped). The surface of these columns is typically pitted with small blowholes.

Wrought iron

If a building is constructed before 1900 and contains members built up from many short-length I-sections, channels and/or flats, then the possible use of wrought iron in these members should be considered. Guidance for the assessment of wrought iron members is provided in Bussell (1997).

Note:
Detailed visual assessment criteria for iron and steel members are presented in Bussell (1997).

C6.4.3 Cast iron and wrought iron: nominal strengths

If members in buildings constructed before the early 1900s are identified to be made of cast iron or wrought iron, the nominal yield strength of these materials should be based on half of the values provided in Table C6.1 in the absence of any other material data. These strengths are based on values published in 1879 (Bates, 1991).

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensile strength (MPa)</th>
<th>Compressive strength (MPa)</th>
<th>Modulus of elasticity (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast iron</td>
<td>93</td>
<td>494</td>
<td>93</td>
</tr>
<tr>
<td>Wrought iron</td>
<td>324</td>
<td>247</td>
<td>185</td>
</tr>
</tbody>
</table>

C6.4.4 Structural steel: historical grades and nominal strengths

Before the 1960s most structural steelwork was imported from Australia (historical evidence indicates this was from the late 1930s onwards) and the UK. A small quantity of steel is also believed to have been imported from the USA and continental Europe.
From the 1960s on, most rolled sections have been manufactured in Australia, while plates and welded sections are mainly produced in New Zealand.

The structural steel properties outlined in relevant historical standard specifications are summarised in Appendix C6B.2. Default nominal strengths are also provided for steel of unknown origin.

Note:
The first New Zealand structural steel standard specifications are believed to be NZS 309 and NZS 310, published in 1941. These standards and their subsequent editions were based on their British equivalents until the first joint AS/NZS standard specifications were introduced in the mid-1990s. The joint specifications were revisions of previous Australian standard specifications.

C6.4.5 Strength modification factors for structural steel

Probable strengths should be used in assessment procedures. Mechanical properties provided in construction documentation and default mechanical properties specified in standard specifications should be taken as nominal strengths. Probable strengths can be determined from these by applying the appropriate strength modification factor from Table C6.2. The factors provided in this table are applicable to steelwork produced in New Zealand and imported from Australia and the UK.

Table C6.2: Factors to convert nominal strengths to probable strengths (based on tests undertaken by Baker (1969), Erasmus (1984), and Erasmus and Smaill (1990))

<table>
<thead>
<tr>
<th>Period</th>
<th>Steel grade</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1960</td>
<td>All</td>
<td>1.1</td>
</tr>
<tr>
<td>1960-Now</td>
<td>300 and below</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>350 and above</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Note:
It is important to recognise that material strengths can vary from member to member, and these variations should be taken into account during assessment. In addition, the assessor should consider the effects of variations in material strengths on the hierarchy of failure.

C6.4.6 Test methods to determine the mechanical properties of structural steel

C6.4.6.1 General

Testing to determine the mechanical properties of structural steel components of an existing building is generally recommended. This is especially the case when the properties of the primary structure cannot be identified from original construction records and mill markings.
Tests should at least identify steel grades. They should also identify unexpectedly high or low strength materials and materials that may exhibit brittle behaviour when subjected to earthquake loading.

Alert:
If the intention is to strengthen an existing steel building and the strengthening involves welding to an existing steel, the weldability of the existing steel parent material needs to be determined.

C6.4.6.2 Tensile strength tests

The tensile strength of a structural steel component can be determined from tensile tests undertaken on a representative material removed from the component. Alternatively, hardness tests may be undertaken on the component in situ.

There is an approximate relationship between material hardness and tensile strength. The best relationship for the range of steel material strengths of interest (400 to 700 MPa) is given by Vickers Hardness, H_v. The relationship between Vickers Hardness and tensile strength of a steel material is tabulated in ASM International (1976) and can be expressed in equation form as:

$$f_u = 3.09 H_v + 21.2$$

…C6.1

where:

$H_v = $ Vickers Hardness from test

$f_u = $ tensile strength

This expression is valid for $100 \leq H_v \leq 300$, corresponding to $330 \leq f_u \leq 950$ MPa.

Note:
Testing for Vickers Hardness is carried out to AS 1817 Metallic Materials – Vickers Hardness Test (1991). There are a number of materials testing organisations in New Zealand that can undertake Vickers Hardness tests.

The key steps for determining what components to test and how many tests to conduct are as follows:

Step 1

Determine the members/elements to be tested, i.e. beams, columns, critical connection components and connectors. Those elements identified as critical from the connection evaluation in Section C6.6.1 and the strength hierarchy evaluation in Section C6.7 should be subjected to the most detailed testing.

Step 2

Determine the frequency of testing. The aim is to cover at least 5% of the total sample of each type of critical component.
Step 3

Use Equation C6.1 or refer to Nashid et al. (2015) for the relationship between Vickers Hardness and tensile strength.

Note:
Nashid et al. (2015) presents the findings of comprehensive recent research on the hardness-tensile strength relationship of structural steel members.

Step 4

Compare the tensile strengths with the expected steel grades. Any material with $H_v < 100$ or $H_v > 230$ should be investigated more thoroughly by tensile sampling and visual inspection. Any material with $H_v > 230$ should also be treated as potentially prone to brittle fracture.

Alert:
There is no direct relationship between tensile strength and brittle fracture. However, the susceptibility to brittle fracture increases with increasing tensile strength. The elongation capacity of steel also decreases with increasing strength. Accordingly, the guidance provided above is a threshold requiring more appropriate testing for potential brittle fracture performance.

C6.4.6.3 Fracture toughness tests

As discussed above and in Section C6.4.1, the potential for member brittle fracture in an existing building becomes an issue for further investigation if the structural components are the weakest links and if any of the following are applicable:

- the components are “unidentified steel” and are located in an external steelwork or on the cold side of the building envelope, or
- the Vickers Hardness test of the components identifies steel with $H_v > 230$, or
- the thickness of any component is > 32 mm.

If any of these apply, material from those components should be removed for Charpy impact tests, as specified in NZS 3404:1997, to determine whether the steelwork satisfies energy absorption requirements. Test material may be removed from the less critical regions of a member/element; e.g. from the web of beams away from high shear zones.

A minimum of three Charpy impact tests should be undertaken on material removed from each type of critical component. For the energy absorption requirements to be satisfied, the average Charpy impact energy absorption capacity of a steelwork from the three tests should exceed 27 J at 0°C, while the minimum of the three tests should exceed 20 J at 0°C.

If the steel does not satisfy the above energy absorption requirements, a more detailed evaluation should be undertaken.
Alert:
For brittle fracture of steel to occur during an earthquake, the steel has to have a low Charpy impact energy absorption capacity at service temperature (or the steelwork has to be below its transition temperature at the time of the earthquake) and a stress raiser has to be present in a critical location.

C6.4.7 Nominal yield and nominal tensile strengths of fasteners and weld metals

In the absence of original construction documentation and any physical test data, the nominal strengths of fasteners and weld metals provided in Table C6.3 can be used. The probable strength of pre-1960 rivets can be taken as 1.1 times their nominal strength.

Table C6.3: Nominal strengths of fasteners and weld metals, based on Bussell (1997) and ASCE 41-13

<table>
<thead>
<tr>
<th>Time period</th>
<th>Material</th>
<th>Origin</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901–60</td>
<td>Rivets</td>
<td>USA</td>
<td>207</td>
<td>345</td>
</tr>
<tr>
<td>1934-42</td>
<td>Rivets to BS 548 (High tensile steel)</td>
<td>UK</td>
<td>*</td>
<td>463</td>
</tr>
<tr>
<td>1948-61</td>
<td>Rivets to BS 15 (Mild steel)</td>
<td>UK</td>
<td>*</td>
<td>386</td>
</tr>
<tr>
<td>All</td>
<td>Bolts</td>
<td>All</td>
<td>240</td>
<td>400</td>
</tr>
<tr>
<td>All</td>
<td>Weld metals</td>
<td>All</td>
<td>-</td>
<td>410</td>
</tr>
</tbody>
</table>

Note:
The yield strength of these rivets can be taken as half of their tensile strength.

C6.5 Component Capacities

C6.5.1 General

This section covers the assessment of the probable strength and rotation capacities of members/elements of moment resisting and braced steel frames including:
- beams
- columns
- concrete encased steel beams and columns
- braces
- active links of eccentrically braced frames.

The probable strength of structural steel members/elements should be determined using the probable material strengths as outlined in Section C6.4. A strength reduction factor is not required to be applied (i.e. a strength reduction factor (\(\phi\)) of 1.0 is used).
C6.5.2 Beams

C6.5.2.1 General

The probable strength of steel beams of seismic resisting frames is generally governed by flexural strength.

The flexural strength of a steel beam is dependent on the length of the beam between adjacent cross sections that may be either restrained or unrestrained (segments) and the restraint condition provided at the ends of the segments (full, partial or lateral restraint).

The effect of combined actions of shear and flexure should be assessed at cross sections where both shear and flexure are expected to be high.

C6.5.2.2 Shear strength

For a stocky web of a structural steel section satisfying a web panel slenderness ratio \(\left(\frac{d_p}{t_w} \right) \) of

\[
\frac{d_p}{t_w} \leq \frac{82}{\sqrt{\frac{f_y}{250}}} \quad \text{...C6.2}
\]

where:

\(d_p \) = depth of web
\(t_w \) = thickness of web
\(f_y \) = yield strength.

the probable shear yield capacity of the web \((V_v) \) should be taken as (NZS 3404:1997):

\[
V_v = 0.6 f_y A_w \quad \text{...C6.3}
\]

where:

\(f_y \) = probable yield strength
\(A_w \) = area of web.

If the above web slenderness criterion is not satisfied and the web is slender, the web is likely to buckle instead of yielding in shear. The probable shear buckling strength of slender webs should be determined from Clause 5.11.5 of NZS 3404:1997.

C6.5.2.3 Flexural strength

The probable section flexural strength \((M_s) \) and probable member flexural strength \((M_b) \) of steel beams that are subjected to bending about their major principal axis should be determined from Clause 5.2 and Clause 5.3 of NZS 3404:1997 using probable material strengths.

The sections of a steel beam should be compact and not prone to local plate buckling in order to have flexurally yielding regions in the beam that are able to develop and maintain their full plastic section strength until the deformation capacity is reached.
In addition to having compact sections, steel beams or segments of steel beams need to have full restraint against lateral buckling (FLR) to develop and maintain their full section plastic strength.

Beams supporting a concrete slab are considered to have FLR and develop their section flexural strength, while beams supporting timber floors generally achieve member flexural strength only. Restraint offered to steel beams by timber floors or other lateral restraint conditions are provided in HERA Report R4–92 (Clifton, 1997).

The probable strength of beams having slender sections is limited to below their probable yield strength due to local plate buckling. However, unlike elastic buckling of compression members, buckling of slender plates of flexural members does not lead to immediate loss of load-carrying capacity or excessive deflections as shown in Figure C6.8, as redistribution of in-plane stresses occurs within the plates.

![Figure C6.8: Post-buckling behaviour of thin plates (Trahair et al., 2008)](image)

A typical relationship between the probable flexural strength \((M) \) and probable chord rotation \((\theta) \) capacity of steel beams with FLR is provided in Figure C6.9. The plastic hinge rotation \((\theta_p) \) capacity of this type of beam should be determined from Table C6.4 using the highest possible member category. The member category for steel beams should be determined based on steel material and section geometry requirements outlined in Clause 12.4 and Clause 12.5 of NZS 3404:1997 respectively.

![Figure C6.9: Moment-rotation relationship for steel beams and columns with FLR](image)
Table C6.4: Plastic hinge rotation capacity limits (θ_p) for steel beams with FLR

<table>
<thead>
<tr>
<th>Category of member</th>
<th>θ_p (mrad)</th>
<th>Residual strength factor f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 2</td>
<td>45</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Note:
If the beam under consideration cannot support gravity loading ($G + \psi_E Q$) in a simply supported condition, halve the plastic rotation capacity of the beam.

The probable yield rotation (θ_y) of seismic governed steel beams that are rigidly connected to columns at both ends can be determined from:

$$\theta_y = \frac{M_s l_b}{6E l_b} \quad \ldots C6.4$$

where:
- M_s = probable section flexural strength
- l_b = clear length of beam
- E = modulus of elasticity
- I_b = second moment of area of beam.

C6.5.3 Columns

Steel columns in seismic resisting buildings are generally subjected to a combination of flexure and axial forces. Both axial tension and compression reduce the flexural capacity of steel columns, while axial compression reduces the local buckling capacity.

The probable strength of steel columns may be limited by the various member shear and flexural yield mechanisms outlined in Section C6.5.2. In addition, the flexural capacity of steel columns may be limited by column buckling. The probable section and member flexural capacities of steel columns should be determined from Clause 8.3 and Clause 8.4 of NZS 3404:1997 using probable material strengths.

When determining the plastic hinge rotation capacity of steel columns, the axial force used should be that from the gravity load associated with earthquake action ($N_G + \psi_E Q$) and the seismic contribution should be ignored.

Note:
Experimental tests (MacRae, 1990 and Brownlee, 1994) have shown that the inelastic behaviour and rotation capacity of a steel beam-column subject to compression and major axis bending is dependent on the magnitude of the constant component of the compression force – i.e. that from $N_G + \psi_E Q$ – rather than on the total compression force that includes the seismic component.

Steel columns that are subjected to inelastic demand should satisfy the axial load limitations of Clause 12.8.3 of NZS 3404:1997. This clause is intended to ensure that the level of compression in a column is not too high to compromise the capacity of the column to dependably accommodate inelastic earthquake demands.
A typical moment-rotation relationship of steel columns that have FLR is provided in Figure C6.9, while their plastic hinge rotation capacity (θ_p) should be determined from Table C6.6 using the highest possible member category. The member category for steel columns should be determined based on steel material and section geometry requirements outlined in Clause 12.4 and Clause 12.5 of NZS 3404:1997 respectively.

Table C6.5: Plastic hinge rotation capacity limits (θ_p) for steel columns with FLR

<table>
<thead>
<tr>
<th>Category of member</th>
<th>θ_p (mrad)</th>
<th>$N^*/\phi N_s \leq 0.15$</th>
<th>$0.15 < N^*/\phi N_s \leq 0.3$</th>
<th>$0.3 < N^*/\phi N_s \leq 0.5$</th>
<th>$0.5 < N^*/\phi N_s \leq 0.8$</th>
<th>Residual strength factor, f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 2</td>
<td></td>
<td>50</td>
<td>45</td>
<td>20</td>
<td>15</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>35</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The yield rotation of steel columns that have a point of contraflexure at mid height and are subjected to both flexure and compression can be determined from:

$$\theta_y = \frac{M_s L_c}{6EI_c} \left(1 - \frac{N^*}{N_c}\right)$$

...C6.5

where:
- M_s = probable section flexural strength
- L_c = clear length of column
- E = modulus of elasticity
- I_c = second moment of area of column
- N^* = axial force demand from analysis
- N_c = probable member capacity in compression.

Comparisons of the provisions in NZS 3404:1997 with physical tests undertaken recently in Canada on a medium heavy I section column type cross section and an I section beam type cross section indicated that the following modifications needed to be made to the provisions in NZS 3404:1997 when determining the probable capacity of steel members:

- The rotation restraint factor (k_r) should be taken as 0.85, consistent with a plastic hinge forming at one end only at a particular point in time.
- The member effective length factor (k_e) should be taken as 0.85 instead of the NZS 3404-specified 1.0, consistent with a plastic hinge forming at one end only at a particular point in time.

The physical tests undertaken in Canada also showed that the plastic rotation limits presented in Table C6.5 for highly axially loaded columns are on the conservative side.

Members that are subjected to bending about their minor principal axis should be considered capable of developing their probable plastic section flexural strength about their minor principal axis.
C6.5.4 Concrete encased steel beams and columns

C6.5.4.1 General

If the concrete encasement of steel members complies with the requirements of NZS 3404:1997 for composite member action, the assessment of such members should be undertaken in accordance with NZS 3404:1997, consistent with the determination of probable strength as specified in these assessment guidelines.

The probable capacity of encased steel members not satisfying the requirements of NZS 3404:1997 should be determined as discussed below.

Note:
The structural members of old steel frames are generally encased in lightly reinforced concrete. In some cases the concrete encasement is unreinforced and has low compressive strength, and is therefore generally considered to play a fire protection role only (Bruneau and Bisson, 2000).

If the concrete encasement of old steel frames is reinforced, the reinforcement is often nominal and consists of plain round bars and thin wire meshes. Inadequately reinforced concrete encasement results in a significant increase in stiffness and a relatively small increase in strength of the encased members.

C6.5.4.2 Concrete encased steel beams, solid sections

The concrete encasement should be assumed to suppress local buckling. The probable strength of such beams should be based on the strength of the steel member only, with slight strength enhancement allowed for due to the concrete encasement:

\[M_s = 1.1 S f_y \] \quad \text{...C6.6}

where:

\[S \quad = \quad \text{plastic section modulus} \]
\[f_y \quad = \quad \text{probable yield strength}. \]

The moment-rotation relationship of concrete encased steel beams is similar to that provided in Figure C6.9. The plastic hinge rotation capacity (\(\theta_p \)) should be determined from Table C6.4 and the yield rotation capacity from Equation C6.4.

C6.5.4.3 Concrete encased steel columns, solid sections, small change in cross section area or moment of inertia of the encased steelwork within a storey height

The concrete encasement should be assumed to suppress local buckling of the encased steel elements and lateral buckling for moment. However member buckling in compression needs to be considered in accordance with Clause 6.3 of Wood (1987). Alternatively, use the column design curve from NZS 3404:1997 for \(\alpha_b = 0.0 \) to determine the slenderness reduction factor, with the effective length factor, \(k_e = 1 \) in accordance with Clause 12.8.2.4 of NZS 3404:1997.
The flexural capacity of such columns should be based on the flexural capacity of the steel members only.

The moment-rotation relationship of concrete encased steel columns is similar to that provided in Figure C6.9. The probable plastic hinge rotation capacity (θ_p) should be determined from Table C6.4 (Category 2) and the yield rotation capacity from Equation C6.5. However, for the columns to be considered to have ductility capacity they should satisfy the axial load limitations of Clause 12.8.3 of NZS 3404:1997.

C6.5.4.4 Concrete encased steel columns, laced and battened sections or solid sections with significant change in the cross section area or moment of inertia of the encased steelwork within a storey height

The response of encased laced and battened columns is considered nominally ductile and, as such, their plastic hinge rotation capacity (θ_p) should be limited to that for a Category 3 member in Table C6.4.

The probable flexural capacity of this type of column should be based on the probable flexural capacity of the steel elements only, while the yield rotation capacity may be taken as 5 mrad in lieu of a detailed analysis.

The probable compression capacity of laced and battened columns should be determined from Clause 6.4 of NZS 3404:1997 using probable material strengths.

C6.5.5 Braces

C6.5.5.1 Compression capacity

The performance of braces that are subjected to earthquake induced compression forces principally depends on the slenderness ratio of the braces.

Braces that have a slenderness ratio $\frac{k_{el} l}{r} \sqrt{\frac{f_y}{250}} > 120$ generally do not have the capacity to carry compressive inelastic earthquake demand and their capacity is exceeded typically through elastic buckling. On the other hand, braces that have a slenderness ratio $\frac{k_{el} l}{r} \sqrt{\frac{f_y}{250}} \leq 120$ buckle inelastically through local yielding under the combined actions of compression and bending.

![Figure C6.10: Force-displacement relationship for steel braces in compression](image-url)
The probable capacity of braces in compression \((N_c)\) should be determined from Chapter 6 of NZS 3404:1997 using probable material strengths. Note that bending demand due to the self-weight of the brace and any other gravity load acting on the brace should be allowed for when determining the capacity of a brace acting in a horizontal plane (e.g. roof bracing).

When a compression brace buckles inelastically the same peak compression capacity as achieved in a previous cycle is generally not likely to be achieved during subsequent cycles of loading. A typical force-displacement relationship for a brace in compression is presented in Figure C6.10. The values of the parameters in the figure are provided in Table C6.6.

Table C6.6: Force-displacement parameters for steel braces in compression

<table>
<thead>
<tr>
<th>Modified slenderness ratio (\lambda_n)</th>
<th>Component type</th>
<th>(\Delta_p)</th>
<th>(\Delta_u)</th>
<th>Residual strength factor (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 60)</td>
<td>I-section, double angle (2L) in-plane</td>
<td>(\Delta_c)</td>
<td>8(\Delta_c)</td>
<td>(\alpha'_c)</td>
</tr>
<tr>
<td></td>
<td>Hollow section, double angle (2L) out-of-plane</td>
<td>(\Delta_c)</td>
<td>7(\Delta_c)</td>
<td>(\alpha'_c)</td>
</tr>
<tr>
<td>(\geq 120)</td>
<td>I-section, double angle (2L) in-plane</td>
<td>0.5(\Delta_c)</td>
<td>9(\Delta_c)</td>
<td>(\alpha'_c)</td>
</tr>
<tr>
<td></td>
<td>Hollow section, double angle (2L) out-of-plane</td>
<td>0.5(\Delta_c)</td>
<td>8(\Delta_c)</td>
<td>(\alpha'_c)</td>
</tr>
<tr>
<td></td>
<td>Single angle</td>
<td>0.5(\Delta_c)</td>
<td>10(\Delta_c)</td>
<td>(\alpha'_c)</td>
</tr>
<tr>
<td>60 < (\lambda_n) < 120</td>
<td>All</td>
<td>Linearly interpolate</td>
<td>(\alpha'_c)</td>
<td></td>
</tr>
</tbody>
</table>

Note: \(\lambda_n\) should be determined from Clause 6.3.3 of NZS 3404:1997 as: \(\lambda_n = \left(\frac{k_e}{r}\right)\sqrt{\frac{f_y}{250}}\)

\(\Delta_c\) is the deformation of a brace at buckling \((N^*=N_c)\)

The residual strength factor \((\alpha'_c)\) for compression braces is given as:

\[
\begin{align*}
7.7/\lambda_n^{0.6} & \leq 1.0, \quad \text{if } \mu \leq 1.25 \\
42.15/\lambda_n^{1.1} & \leq 1.0, \quad \text{if } \mu > 1.25
\end{align*}
\]

C6.5.5.2 Tension capacity

A typical force-displacement relationship of braces in tension is provided in Figure C6.11. The values of the parameters in the figure are given in Table C6.7. The probable capacity of braces in tension \((N_s)\) should be determined from Chapter 7 of NZS 3404:1997.
Table C6.7: Force-displacement parameters for steel braces in tension

<table>
<thead>
<tr>
<th>Component type</th>
<th>Deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-section</td>
<td>$11\Delta_t$</td>
</tr>
<tr>
<td>Hollow section</td>
<td>$8\Delta_t$</td>
</tr>
<tr>
<td>Single angle</td>
<td>$9\Delta_t$</td>
</tr>
<tr>
<td>Double angle (2L)</td>
<td>$10\Delta_t$</td>
</tr>
<tr>
<td>Rod bracing</td>
<td>$8\Delta_t$</td>
</tr>
</tbody>
</table>

Note: Δ_t is the deformation of a brace at yielding ($N^* = N_y$).

C6.5.6 Active links of eccentrically braced frames

When subjected to earthquake induced forces, an active link of an EBF responds in either a shear ($e \leq 1.6M_s/V_w$), flexural ($e \geq 3M_s/V_w$), or combined shear and flexural ($1.6M_s/V_w < e < 3M_s/V_w$) mode depending on the clear length of the active link (e).

The probable shear and flexural capacities of an active link should be determined from Section C6.5.2.

The force-rotation relationship of active links is similar to that provided in Figure C6.11. However, N_s, Δ_y and Δ in Figure C6.11 should be replaced with V, γ_y and γ respectively to obtain the force-rotation relationship for active links. The values of the parameters in the force-rotation relationship are provided in Table C6.8.

Table C6.8: Force-rotation parameters for active links of EBFs

<table>
<thead>
<tr>
<th>Active link length, e</th>
<th>Deformation* mrad</th>
<th>γ_p</th>
<th>γ_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e \leq 1.6M_s/V_w$</td>
<td>140</td>
<td>γ_y</td>
<td>140</td>
</tr>
<tr>
<td>$e \geq 3M_s/V_w$</td>
<td>Same as beams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1.6M_s/V_w < e < 3M_s/V_w$</td>
<td>Linearly interpolate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: γ_y is the deformation of an active link at yielding.

C6.6 Connection Capacities

C6.6.1 General

Assessing the capacity of a steel frame connection involves determining the load path through the connection, identifying weak links, and then evaluating the probable strength and ductility capacity of those weak links.
The following advice should help when determining the load path through a connection and the weakest link in a load path:

- Determine the internal forces that could be generated in the attached members during an earthquake.
 - An I-section beam responding elastically under flexure will deliver axial forces through the flanges (tension and compression) and vertical shear through the web.
 - An I-section beam responding inelastically under flexure will deliver axial yield forces through the flanges and axial yield forces plus vertical shear through the web.
 - A brace will deliver axial forces (tension is critical) through all its elements.
- Trace the transfer of forces from elements of the supported member into elements of the supporting member that lie parallel to the incoming force. For example, the incoming axial forces from an I-section beam flange connected to an I-section column should be transferred through the column flange into the column web.
- Calculate the probable capacity of all elements along the identified load path in accordance with the general assessment provisions of Section C6.6.3.
- If there are no tension and compression stiffeners in a column adjacent to incoming beam flanges in a moment-resisting beam to column connection, then tensile distortion of the flange of the column or compression buckling of the web of the column web are likely to occur before the beam can develop its full flexural capacity.
- The strength and ductility capacity of a load path is determined by the strength and ductility capacity of the weakest component in the load path.
- If various load paths exist through a connection, the stiffest of the load paths will attract the most force.
- Be particularly aware of situations where the connectors (rivets, bolts or welds) may be the weakest component, as their ductility capacity will be limited. One sided fillet welds in tension or bending are particularly vulnerable in this regard, showing no ductility.
- Be aware of component forces introduced when an applied force changes direction along the load path.

Note:
The article by Blodgett (1987) on welds explains the concept of load paths through welded connections and illustrates this with a number of examples.

C6.6.2 Strength reduction coefficients

Probable strength of structural steel connections should be taken as the values determined using probable material strengths reduced by the strength reduction coefficients provided in Table C6.9.
Table C6.9: Strength reduction coefficients for steel connections

<table>
<thead>
<tr>
<th>Component</th>
<th>Action</th>
<th>Strength reduction coefficient (ϕ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolted connections</td>
<td>Ply in bearing</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Bolt shear, tension, and combined actions</td>
<td>0.9</td>
</tr>
<tr>
<td>Pin connections</td>
<td>Ply in bearing</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Pin shear, tension, and combined actions</td>
<td>0.9</td>
</tr>
<tr>
<td>Welded connections</td>
<td>Complete penetration butt welds</td>
<td>SP 1.0, GP 0.7</td>
</tr>
<tr>
<td></td>
<td>Incomplete penetration, fillet, plug and slot</td>
<td>SP 0.9, GP 0.7</td>
</tr>
</tbody>
</table>

C6.6.3 Bolted and riveted connections

C6.6.3.1 General

Most old riveted or bolted beam to column connections in New Zealand are believed to be clip angle connections (refer to Figure C6.12(b)). While riveted connections were common in many pre-1950s steel frame buildings, rivets were gradually phased out after this and replaced with bolts as riveting was rather labour intensive.

![Figure C6.12: Typical riveted connections (Roeder et al., 1996)](image)

A simplified procedure for determining the moment-rotation relationship of clip angle connections is provided in Section C6.6.3.2. Assessment of other types of historical bolted and riveted connections may be determined using the procedure outlined by Roeder et al. (1996).

The assessment of bolted and riveted connections should be undertaken in accordance with the following:

- Shear capacity of rivets (V_f) can be determined from Barker (2000). The key equation is derived from the bolt shear capacity provisions of NZS 3404:1997 and is given as:

 \[
 V_f = 0.75f_{ut}k_rn_xA_o \quad \ldots C6.9
 \]

 where:

 \[
 f_{ut} = \text{the probable tensile strength of the rivet}
 \]
\[k_r = \text{reduction factor given in Table 9.3.2.1 of NZS 3404:1997 to account for the length of a lap connection (} L_j \text{).} \quad k_r = 1.0 \text{ for } L_j < 300 \text{ mm and for all other type of connections} \]

\[n_x = \text{the number of connector shear planes intercepting the shear plane} \]

\[A_o = \text{the nominal plain shank area of the rivet.} \]

- Probable tension capacity of rivets should be determined using Clause 9.3.2.2 of NZS 3404:1997, with the value of probable tensile strength of the rivet \((f_{uf}) \) determined from Section C6.4.7 as:

\[N_{tf} = A_s f_{uf} \quad \ldots \text{C6.10} \]

where:

\[A_s = \text{the gross tensile stress area of the rivet.} \]

- The diameter of a rivet shank should be determined from the diameter of the rivet head in accordance with Figure C6.13.

- Be aware that some less scrupulous erectors made up some dummy rivets from moulded putty covered in paint on larger groups of rivets. Hitting each rivet with a hammer will soon identify any dummy ones!

- Assume that concrete encasement, if present and with any amount of confining reinforcement, will prevent local buckling of the steel members. This assumption may not hold for members in regions subject to significant inelastic demand and will need to be assessed more closely for such regions.

\[\text{Figure C6.13: Typical rivet shank and head diameters (Bussell, 1997)} \]

- When determining the capacity of a connection, assume that:
 - the connections to beam flanges develop and transfer flexure-induced axial forces from the beam to the column
 - the connections of the beam web to the column flange transfer gravity and earthquake-induced vertical forces and will also transfer horizontal forces, if a suitably stiff and strong horizontal load path from the beam web into the column flange is available, and
 - if there is a direct connection between the beam web and the column flange via welded or bolted plates or cleats, and if this connection is independent of the beam flange to column connection, then for seismic assessment the vertical shear capacity can be assumed to be adequate.
C6.6.3.2 Clip angle connections

Clip angle connections are generally weaker and more flexible than other semi-rigid connections and behave as partially restrained connections. The hysteretic behaviour of clip angle connections is relatively poor, but the connections are often able to sustain large deformation demands (Roeder et al., 1996).

The experimental tests undertaken on historical riveted connections by Roeder et al. (1996) revealed that the mode of failure of clip angle connections under cyclic loading was similar to that under monotonic loading. Both monotonic and cyclic load tests deteriorate and fail at similar levels deformation demands, as shown in Figure C6.14. The monotonic tests typically provided an upper bound envelope for the cyclic tests.

![Figure C6.14: Comparison of monotonic and cyclic moment–rotation behaviour](image)

Both concrete encased and bare connections were observed to experience strength degradation at rotations in the order of 20-25 milliradians. It was also observed that concrete encasement improved performance by suppressing any local deformation until the concrete was crushed at larger deformation demands due to lack of adequate confinement.

The capacity enhancement provided by the composite action of concrete encasement and floor slabs to connection capacity was observed to be substantial and in the range of 30-100%. Concrete encasement significantly increased the strength and stiffness of the weaker and more flexible connections such as clip angle connections (refer to Figure C6.15). The capacity of the bare connections was observed to deteriorate significantly when the clip angles to the beam flanges failed. However, flexural capacity was not completely lost because of the resistance provided by the web cleat angle connections.

It should be noted that bolted clip angle connections would be stiffer and would have more rotational capacity than comparable riveted connections. However, the limits on the overall system inelastic displacement would be such that bolted connections cannot attain their full capacity. For example, when the connections are the weakest element, then rotational demand on the connections will be around 30 milliradians maximum for an inter-storey drift of 2.5%. Therefore, a 40 milliradians limit on rotation is considered a practical upper limit for the system as a whole, even if the individual connection is capable of greater rotations while maintaining a dependable level of flexural capacity.
C6.6.3.3 Simplified assessment procedure for clip angle connections

General

The strength and rotation capacity of bolted and riveted clip angle connections (illustrated in Figure C6.16) can be determined from first principles and using the guidance presented in this section. The procedure includes a method for determining the probable flexural strength, along with expressions for estimating the ultimate rotational capacity. Both flexural strength and degradation threshold are considered to be a function of the expected mode of failure of the connections to the beam flanges.

The flexural strength of a clip angle connection is limited by the smallest demand required to form one of the following four yielding/shear failure modes (Roeder et al., 1996):

- shear yielding/failure of the connectors
- tensile capacity of flange cleat angles
• tensile capacity of connectors, or
• flexural yielding of connection elements (flange cleat angles and/or web cleat angles).

Shear yielding/failure of connectors

Shear yielding/failure of connectors that are provided between the horizontal leg of the flange cleat angles and the beam flange often dictates the flexural capacity of clip angle connections in old buildings.

The probable shear strength of connectors (V_f) can be determined from Equation C6.9, and the probable flexural strength of a clip angle connection limited by the shear strength of the connectors (M_p) can be determined from:

\[
M_p = nV_f d_b
\]

where:
- n = the number of connectors
- d_b = the depth of the beam.

Tensile capacity of flange cleat angles

The strength of the horizontal leg of the flange cleat angle in tension may limit the flexural capacity of clip angle connections. The tensile strength of a flange cleat angle (N_t) can be determined from (NZS 3404:1997):

\[
N_t = A_g f_y \leq 0.85 k_{te} A_n f_u
\]

where:
- A_g = the gross area of the cross section
- f_y = the probable yield strength of the section
- k_{te} = the correction factor in accordance with Clause 7.3 of NZS 3404:1997
- A_n = the net area of the cross section
- f_u = the probable tensile strength of the section.

The probable flexural strength of a clip angle connection limited by the tension capacity of the flange angles (M_p) can be determined from:

\[
M_p = N_t (D_b + \frac{t_1}{2})
\]

where:
- t_1 = the thickness of the flange cleat angle leg.

Tensile capacity of connectors

The tensile capacity of the connectors that are provided between the vertical leg of the flange cleat angle and the column flange may also control the flexural strength of a clip angle connection. Experimental tests have shown that this failure mode is the least ductile with a rapidly deteriorating capacity.
The probable tensile strength of connectors (N_{tf}) can be determined from Equation C6.10 and the probable flexural strength of a clip angle connection limited by the probable tensile strength of the connectors (M_p) can be determined from:

$$M_p = nN_{tf}(d_b + a)$$ \hspace{1cm} \text{…C6.14}

where:
- n = the number of connectors
- a = the distance between the centre of the connectors and the flange cleat angle leg.

Flexural yielding of flange cleat angles

Flexural yielding of the vertical leg of the flange cleat angle connected to the column flange is the fourth mode that may limit the flexural strength of clip angle connections.

Flexural yielding of the flange cleat angle requires development of prying actions. However, the prying forces that develop in connections that use mild steel connectors are typically not likely to cause the capacity of the connectors to be exceeded.

The probable flexural strength of a clip angle connection reduced by prying actions (M_p) is given as:

$$M_p = \left(\frac{B_f t_1^2 f_y + a_1 a N_{tf}}{2a} \right) (D_b + t_1/2)$$ \hspace{1cm} \text{…C6.15}

where:
- B_f = the length of the angle
- a_1 = the distance between the centre of the connectors and the top edge of the flange cleat angle.

If the connectors are strong enough to induce flexural yielding of the flange cleat angles, the probable flexural strength can be determined from:

$$M_p = \frac{B_f t_1^2}{2a} f_y (D_b + t_1/2)$$ \hspace{1cm} \text{…C6.16}

Flexural yielding of web cleat angles

If flexural yielding of the flange angle cleat angle governs the probable flexural strength of a clip angle connection, the flexural strength of the web cleat angle can be considered to contribute to the overall connection strength.

The probable flexural capacity of the web cleat angle can be determined from:

$$M_{pw} = \frac{l_a t_2^2}{2} f_y$$ \hspace{1cm} \text{…C6.17}

where:
- l_a = the length of the web cleat angle face
- t_2 = thickness of web cleat angle leg.
From Equation C6.17, the tensile force in the web cleat bolts/rivets is:

\[T = \frac{2M_{pw}}{k} \] …C6.18

where:

\[k = \text{the distance between bolt centreline and the web cleat angle leg.} \]

Probable tensile strength of the column flange is given as:

\[T_c = (4m + 1.25e)t_c f_{yc} \] …C6.19

where:

\[m = \text{the distance from centre of bolt hole to radius root at web} \]
\[e = \text{distance from rivet centre to flange edge} \]
\[t_c = \text{thickness of the column flange; and} \]
\[f_{yc} = \text{the probable yield strength of the column flange.} \]

The contribution of the web cleat angle to the probable flexural strength of the connection is:

\[M_p = Qb \] …C6.20

where:

\[Q = \text{either } T \text{ from Equation C6.18 or } T_c \text{ from Equation C6.19, whichever is less, and} \]
\[b = \text{the distance between the centroid of tension and compression forces in the web cleat.} \]

C6.6.3.4 Moment-rotation behaviour of riveted clip angle connections

The moment-rotation behaviour of riveted clip angle connections is provided in Figure C6.17 based on the experimental studies undertaken by Roeder et al. (1996). The values of the parameters in the figure are provided in Table C6.10.
Table C6.10: Moment-rotation parameters for clip angle connections

<table>
<thead>
<tr>
<th>Mode of failure</th>
<th>Yield rotation (mrad)</th>
<th>Plastic rotation (mrad)</th>
<th>Residual strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\theta_y)</td>
<td>(\theta_{p1})</td>
<td>(\theta_{p2})</td>
</tr>
<tr>
<td>Tensile yielding of connectors</td>
<td>5</td>
<td>3.75 / (d_b) (\theta_{p1} + 5)</td>
<td>0.5(M_p)</td>
</tr>
<tr>
<td>Shear yielding of connectors</td>
<td>5</td>
<td>7.5 / (d_b) (\theta_{p1} + 5)</td>
<td>0.5(M_p)</td>
</tr>
<tr>
<td>Flexural yielding of connecting elements</td>
<td>5</td>
<td>12.5 / (d_b) (\theta_{p1} + 5)</td>
<td>0.5(M_p)</td>
</tr>
</tbody>
</table>

Note:
- \(d_b \) is depth of beam (m)
- \(M_{p,\text{encased}} = 2M_{p,\text{bare}} \)

C6.6.4 Welded connections

Welded connections are able to transfer the moment-induced beam actions into columns if the various components along the load path have the required capacity. The required checks are outlined in Figure C6.18 and Table C6.11.

Note:
As discussed in Section C6.3.2, fractures of welded beam-column connections were widely reported after the 1994 Northridge earthquake, with the majority of these fractures observed at the bottom beam-column flange connections. Refer to this section for more discussion, including a list of the factors considered to have contributed to the brittle failures of “Pre-Northridge” connections (FEMA 355E, 2000).

Figure C6.18: Components of welded connections requiring checks (SCI, 1995)
Table C6.11: Components of welded connections requiring checks (SCI, 1995)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Reference on Figure C6.18</th>
<th>Checklist item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension</td>
<td>a</td>
<td>Beam flange</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>Flange weld</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>Column flange in bending</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>Column web in tension</td>
</tr>
<tr>
<td>Compression</td>
<td>e</td>
<td>Beam flange</td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>Flange weld</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>Column web crushing</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>Column web buckling</td>
</tr>
<tr>
<td>Horizontal shear</td>
<td>j</td>
<td>Column web panel shear</td>
</tr>
<tr>
<td>Vertical shear</td>
<td>k</td>
<td>Fin plate or direct weld to column</td>
</tr>
</tbody>
</table>

Table C6.12: Probable capacities of components of welded connections requiring checks (NZS 3404:1997, SCI, 1995)

<table>
<thead>
<tr>
<th>Item</th>
<th>Equation</th>
<th>Equation number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam flange capacity</td>
<td>$N_{fbt} = N_{fbc} = 1.2\left[\min(b_{fb}, b_{fc})\right]t_{fb}f_{yb}$</td>
<td>...C6.21</td>
</tr>
<tr>
<td>Column flange tension capacity*</td>
<td>$N_{fcf} = b_{eff}t_{fb}f_{yb}$</td>
<td>...C6.22</td>
</tr>
<tr>
<td></td>
<td>$b_{eff} = t_{ww} + 2\tau + 7t_{fc}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_{eff} = \frac{t_{wc}^2f_{yc}}{t_{fb}f_{yb}}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_{eff} \leq b_{tb} \leq b_{ic}$</td>
<td></td>
</tr>
<tr>
<td>Column web tension capacity</td>
<td>$N_{wct} = t_{wct}t_{tb} + 2s_f + 5(t_{ic} + \tau_c)f_{yc}$</td>
<td>...C6.23</td>
</tr>
<tr>
<td>Column web crushing</td>
<td>$N_{wcc} = (b_1 + n_2)t_{wcf}f_{yc}$</td>
<td>...C6.24</td>
</tr>
<tr>
<td></td>
<td>$b_1 = t_{fb} + 2s_f$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n_2 = 5(\tau_c + t_{ic})$</td>
<td></td>
</tr>
<tr>
<td>Column web buckling</td>
<td>$N_{wcc} = (b_1 + n_1)t_{wcf}f_{yc}$</td>
<td>...C6.25</td>
</tr>
<tr>
<td></td>
<td>$n_1 = d_c$</td>
<td></td>
</tr>
<tr>
<td>Column web panel shear</td>
<td>$V_c = 0.6d_c\epsilon_{wcf}f_{yc} \left[1 + \frac{3b_{ic}\epsilon_{c}^2}{d_{wcf}t_{wcf}}\right]$</td>
<td>...C6.26</td>
</tr>
<tr>
<td>(unstiffened web)*</td>
<td>$\eta = \sqrt{(1.15 - (N^*/N_s)^2 \leq 1}$</td>
<td></td>
</tr>
<tr>
<td>Beam flange weld</td>
<td>$N_{tfw} = b_{eff}u_{w}$</td>
<td>...C6.27</td>
</tr>
</tbody>
</table>

Note:
*If $b_{eff} < 0.7b_{fb}$, tension stiffeners are necessary to avoid weld tearing at the point of peak stress.

$b_1, n_1, \& n_2$ should be reduced if the column projection is insufficient for full dispersal.
where:

- b_{fb} = beam flange width
- b_{fc} = column flange width
- d_b = beam depth
- d_c = column depth
- f_{yb} = probable yield strength of beam
- f_{yc} = probable yield strength of column
- n_1 = length obtained by a 45° dispersion though half the depth of the column
- n_2 = length obtained by a 1:2.5 dispersion though column flange and root radius
- N^* = compression demand on column
- N_{fbt} = probable tension capacity of beam flange
- N_{fct} = probable tension capacity of column flange
- N_s = probable column section compression capacity
- N_{fw} = probable tension capacity of beam flange weld
- N_{wbt} = probable tension capacity of beam web
- N_{wcc} = probable compression capacity of column web
- N_{wct} = probable tension capacity of column web
- r_c = column root radius
- s_f = weld leg length to beam tension flange (when available)
- t_{fb} = beam flange thickness
- t_{fc} = column flange thickness
- t_{wc} = column web thickness
- V_c = probable shear capacity of panel zone.

The demand on beam flanges of welded beam-column connections is determined from:

$$N_{fb}^* = M^* \frac{d_b - t_{fb}}{2} - \frac{N^*}{2} \quad \ldots C6.28$$

$$N_{fbc}^* = M^* \frac{d_b - t_{fb}}{2} + \frac{N^*}{2} \quad \ldots C6.29$$

where:

- N_{fb}^* = tension demand on beam flange
- N_{fbc}^* = compression demand on beam flange.

If the various components of a welded connection do not have the required capacity to resist beam/column overstrength demand, as would be the case for an unstiffened column that is typical of old buildings, the moment-rotation behaviour of the connection should be taken from Table C6.13 and the general shape of the moment-rotation curve should take the form of Figure C6.17.
Table C6.13: Moment-rotation parameters for welded connections

<table>
<thead>
<tr>
<th>Mode of failure</th>
<th>Yield rotation (mrad) θ_y</th>
<th>Plastic rotation (mrad) θ</th>
<th>Residual strength $M_{p,\text{web}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange weld failure</td>
<td>3</td>
<td>$3.75/d_b$</td>
<td>$\theta_{p1} + 5$</td>
</tr>
</tbody>
</table>

Note:
θ_{p1} is the depth of beam (m)

$M_{p,\text{encased}} = 1.3M_{p,\text{bare}}$

$M_{p,\text{web}}$ is the probable flexural capacity of the beam web column connection and needs to be determined from the particular connection detail adopted. This capacity is determined from:
- the probable capacity of the connection, if the beam web is connected to the column flange using clip angles, or
- the probable plastic flexural capacity of the beam web, if the beam web is connected using balanced, double sided fillet welds, or butt welds of sufficient strength to yield the web in tension.

If a beam-column connection is suspected of being welded but the connection is not visible (e.g. due to concrete encasement) and if no drawings are available, the encasement material should be removed from a representative connection so that a reasonable assessment can be undertaken. The difference in connection moment-rotation capacity between a connection that can transfer the beam flange axial forces induced by inelastic beam action dependably into the column and one that cannot is significantly large that the capacity should be determined and not guessed.

Similarly, the existing state of welds needs to be assessed using visual inspection techniques. Engineers undertaking weld inspections should be familiar with visual inspection techniques such as those outlined by Hayward and McClintock (1999).

C6.7 Global Capacity

C6.7.1 Assumptions

Guidance provided in this section for determining the global capacity of steel framed buildings assumes the following:
- The form of the connections is such that the strengths and the elastic and post-elastic stiffness of the connections can be determined by rational assessment
- The steel members consist of either solid I-sections or sections built up by plates, and connected by rivets, bolts or welds, where the strength of the connectors can be determined by rational assessment
- The member sizes and connection details can be ascertained with sufficient accuracy to undertake the assessment. This will typically require the availability of structural drawings containing critical details or selective removal of non-structural and concrete encasements surrounding the frames to expose critical members and connections
• Concrete encasement to the steel frames is considered to play a fire protection role only and is not sufficiently reinforced to contribute significantly to the strength or stiffness of the frames.

If the concrete encasement is well reinforced and is likely to contribute to the strength and stiffness of the steel frame, the contribution of the composite section should be determined. Note that this is very unlikely in pre-1976 building encased beams, and more likely in pre-1976 building encased columns. Column encasement is advantageous as it increases column strength relative to beam strength.

C6.7.2 Global capacity of steel moment resisting frames

C6.7.2.1 General procedure

Determining the global capacity of a steel MRF principally involves identifying the governing inelastic mechanism and the associated deformation capacity, which entails assessing the strength hierarchy throughout the frame.

The influence of inelastic response on overall response is considered to be insignificant on steel MRFs exhibiting the following “good features”:

• The strength hierarchy at all floor levels is beam sidesway except on the uppermost seismic mass level.

• If the connections are the weakest links, the evaluation of the connections in accordance with Sections C6.5 and C6.6 shows the following:
 - The weakest components of the connections are not the connectors (welds, rivets and/or bolts). In addition, the capacity of the connections is not limited by the net tension failure of components.
 - When the peak flexural strength of the connections is exceeded, the connections are able to retain their integrity and maintain their shear and axial force carrying capacity.

• None of the beam to column connections has the potential to introduce local buckling or tearing failure in the columns (e.g. lack of stiffeners adjacent to an incoming beam flange in a welded beam to column connection).

• The assessed inelastic response of the system (this assessment is qualitative rather than quantitative) is essentially symmetrical in nature and does not contain features that will inevitably lead to a progressive deformation of the building in one direction only.

If the ductility demand on a steel frame due to 100%ULS shaking is not significant ($\mu \leq 1.5$) and the frame exhibits the four “good features” listed above, the inelastic response of the frame does not need to be assessed.

A step-by-step hand procedure is provided below on a rapid determination of the global capacity of steel MRFs having either beam sidesway or column sidesway as the governing inelastic mechanism. This procedure is applicable to regular frames that have similar bay widths, floor heights, and floor seismic weights. Refer to Section C2 for the assessment of irregular frames.
Step 1

Determine the probable material strength of the members, the elements of the connections and the connectors. Use probable strengths provided in Section C6.4 in the absence of original construction documentation and physical test data.

Step 2

Determine and assemble the probable capacity of the individual members and connections located on potentially critical floor levels. Refer to Sections C6.5.2 and C6.5.3 for beams and columns respectively, and Section C6.6 for connections.

If the individual beams of the frame on each level under consideration cannot support gravity loading \((G + \psi_E Q)\) in a simply supported condition, then halve the plastic rotation capacity of the beams (refer to Section C6.5.2) and of the connections (refer to Section C6.6). The reduction in rotational capacity reflects the monotonic, cumulative nature of inelastic demand on the yielding regions of such members.

If the slab is placed in contact with the columns of a frame or insufficient separation is provided, the contribution of the slab to the flexural strength of the beams should be taken into account.

The assessment should include the first level above the seismic ground level, the uppermost seismic mass level, and floor levels where member sizes and/or connection types change.

Step 3

Determine the governing inelastic mechanism of the frame: i.e. beam sidesway or column sideways mechanism.

A sway potential index \((S_i)\) can be employed to determine the potential sway mechanism of a frame. A sway potential index can be defined at a storey of the frame by comparing the sum of the probable flexural strengths of the beams (or connections, whichever are smaller) and the columns at the centroid of every joint:

\[
S_i = \frac{\sum (M_{bl} + M_{br})}{\sum (M_{ca} + M_{cb})} \quad \text{...C6.30}
\]

where:

- \(M_{bl}\) = probable beam (or connection, whichever is smaller) flexural strength to the left of the joint, extrapolated to the centroid of the connection
- \(M_{br}\) = probable beam flexural strength (or connection, whichever is smaller) to the right of the joint, extrapolated to the centroid of the connection
- \(M_{ca}\) = probable column flexural strength above the joint, extrapolated to the centroid of the connection
- \(M_{cb}\) = probable column flexural strength below the joint, extrapolated to the centroid of the connection.
If \(S_i < 0.85 \), a beam sidesway mechanism is likely to form. It should be noted that a significant change in storey heights increases the likelihood of a column sidesway mechanism.

If \(S_i > 1 \), a column sidesway mechanism is likely to form.

If \(0.85 < S_i < 1 \), either a beam sidesway or column sidesway mechanism is likely to form. In such situations the effect of both mechanisms need to be assessed.

Note:

When a frame has semi-rigid connections and these connections are flexurally weaker than the beams or the columns, a beam sidesway mechanism forms.

Step 4

Determine the probable base shear capacity of the frame.

If the potential inelastic mechanism of a frame is beam sidesway, the probable base shear capacity \((V_{\text{base}}) \) of the frame can be determined from (refer to Figure C6.19):

\[
V_{\text{base}} = \frac{\sum_{i=1}^{m} M_{ri}}{n_{eq}} + \sum_{i=1}^{n} V_{bi} L_{eqn}
\]

where:

\[
M_{ri} = \text{probable column base flexural strengths}
\]

\[
V_{bi} = \text{beam seismic shears determined from probable beam flexural strengths as:}
\]

\[
V_{bi} = \frac{M_{bi,l} + M_{bi,r}}{L_{bi}}
\]

\[
M_{bi,l} = \text{probable beam (or connection, whichever is smaller) flexural strength to the left of the joint, extrapolated to the centroid of the connection}
\]

\[
M_{bi,r} = \text{probable beam flexural strength (or connection, whichever is smaller) to the right of the joint, extrapolated to the centroid of the connection}
\]

\[
L_{bi} = \text{bay width}
\]

\[
n = \text{number of storeys}
\]

\[
m = \text{number of columns that are fixed at the base}
\]

\[
L_{eq} = \text{total width of frame}
\]

\[
h_{eq} = \text{effective height of frame to be determined from the displaced shape of the frame as:}
\]

\[
h_{eq} = \frac{\sum_{i=1}^{n} m_i H_i \Delta_i}{\sum_{i=1}^{n} m_i \Delta_i}
\]

\[
m_i = \text{floor mass}
\]

\[
\Delta_i = \text{lateral displacement of floor}
\]

\[
H_i = \text{height of floor.}
\]
Note:
Equation C6.32 provides an upper bound base shear capacity. For the frame to achieve this upper bound base shear capacity, all of the beams and the bases of the columns should start to yield before the rotational capacity of the critical hinge is exceeded.

If the rotational capacity of the critical hinge is likely to be exceeded before some of the beams and/or the bases of the columns start to yield, the flexural resistance developed in the potential plastic hinges that have not started to yield should replace probable flexural strengths in Equation C6.33.

![Figure C6.19: Base overturning demand on a beam sidesway governed frame](image)

If the potential inelastic mechanism of a frame is column sidesway, the probable base shear capacity \(\left(V_{\text{base}} \right) \) of the frame can be estimated from:

\[
V_{\text{base}} = \sum_{i=1}^{m} M_{\text{ri,b}} + \sum_{i=1}^{m} M_{\text{ri,t}} \frac{h}{h} \quad \cdots \text{C6.34}
\]

where:
- \(M_{\text{ri,b}} \) = probable column flexural strengths at the base or bottom of the column extrapolated to the centroid of the connection
- \(M_{\text{ri,t}} \) = probable column flexural strengths at the top of the column extrapolated to the centroid of the connection
- \(h \) = storey height.

Step 5

Ensure the axial force demand on the external columns does not exceed the probable limiting axial force \((N_{\text{cr}}) \) from Section 12.8.3.1 of NZS 3404:1997:

\[
N'_{\text{eq}} + N'_{g} \leq N_{\text{cr}} \quad \cdots \text{C6.35}
\]
where:

\[N_{eq}^* = \text{earthquake-induced axial force demand} \]
\[N_g^* = \text{axial force demand due to gravity loading}. \]

If the above equation is not satisfied, reduce the base shear capacity of the frame until it is.

Step 6

Determine the deformation capacity of the frame.

Refer to Section C2 for methods on determining the deformation capacity of frames.

C6.7.2.2 Steel moment resisting frame systems with infill panels

The interaction between steel MRFs and infill panels should be assessed using the guidance provided in Section C7.

The assessment of infilled steel MRFs should allow for the stiffening effect of infill panels on the overall system response. In addition, the presence of infill panels induces increased shear demands on the frame members by creating short column effects. The increased shear demands are unlikely to exceed the capacity of bare steel or concrete encased solid section columns. However, elements of encased laced and battened members may not have sufficient shear capacity. In addition, if the columns have a better shear capacity than the infills and the infills are likely to sustain significant damage, the potential for a soft-storey formation should be taken into consideration.

Steel moment-resisting infilled frames with weak connections should be assessed for the potential for diagonal compression struts formed in infill panels pulling apart beam to column connections as the frames deform laterally. External beam to column connections are likely to be more critical than internal connections.

Alert:

The assessment of weak beam to column connections involves comparison of the tension capacity of the connections with the peak compression capacity of the infill panels (capacity prior to deterioration due to panel crushing/shear failure). If the infill panel compression strut capacity is greater than the beam to external column tension capacity, failure of this connection needs to be considered for the response of that end bay.

C6.7.3 Global capacity of concentrically braced steel buildings

Concentrically braced frames (CBFs) are braced frames where the centrelines of the braces intersect at a node. CBFs are commonly X-braced or V-braced (refer to Figure C6.20) and rely primarily on the axial strength and stiffness of the braces to resist lateral forces.

The lateral force capacity of CBFs is dependent on:

- bracing configuration – X-braced CBFs have an advantage over V-braced CBFs (refer to Figure C6.20, as the inelastic capacity of V-braced CBFs is likely to be governed by the capacity of the collector beam and the post-buckling capacity of the braces only
Part C – Detailed Seismic Assessment

- the slenderness ratio of the braces – as discussed in Section C6.5.5.1, the slenderness ratio has a significant influence on the deformation capacity and residual strength of compression braces, and
- the capacity of brace connections to the beams and columns of the frame – the connections of the braces should have sufficient capacity to resist demand due to braces yielding in tension or buckling in compression.

Alert:

When a compression brace of a V-braced CBF buckles, the capacity of the tension brace may not be fully utilised as the collector beam may not have the capacity to resist the unbalanced vertical force acting at the brace-collector beam joint. Note that the collector beam will have to resist demands due to gravity loads in addition to the unbalanced vertical force.

The buckling of compression braces of V-braced CBFs results in significant reductions in frame lateral stiffness and strength, as the system changes to a D-braced EBF with a long flexural link. In such situations a plastic hinge is likely to form in the collector beam before the tension brace yields in tension.

During the subsequent reversing cycle of earthquake demand, the previously tension brace generally buckles before the braces that buckled during the preceding half cycle fully straighten up (Tremblay and Robert, 2000). Therefore, the inelastic capacity of V-braced frames is limited by the post-buckling capacity of the braces.

The following steps outline an assessment procedure for X-braced and V-braced CBFs.

Step 1

Determine and assemble the probable capacity of the individual members and connections located on potentially critical floor levels. The capacities to be determined are:

- axial force capacity of the braces
- post-buckling capacity of the braces
- flexural and compression capacity of collector beams
- axial force and flexural capacity of columns
- axial force capacity of connections and splices.
Step 2
Determine the weakest member and the expected mode of failure, i.e. brace, brace connection, collector beam, column, etc.

Step 3
Check whether the frame exhibits the following good features:
- The strength hierarchy involves weak braces at all levels except the uppermost seismic level (rather than weak columns or weak collector beams).
- The columns are continuous over two consecutive stories.
- The collector beams, columns and the beam to column connections have sufficient capacity to resist the loads generated by the system at the point of brace yielding in tension and brace buckling in compression. In many old braced buildings the brace to beam/column connections are likely to be the weakest components.
- For all beam to column connections the connections should not be of a type that has the potential to introduce local buckling or tearing failure in the column under inelastic rotation due to lack of column tension/compression stiffeners.
- The assessed inelastic response of the system (this assessment is qualitative rather than quantitative) should be essentially symmetrical in nature and not contain features that will inevitably lead to a progressive displacement of the building in one direction.

Step 4
If the ductility demand on the frame due to 100%ULS shaking is not significant ($\mu \leq 1.5$) and the frame exhibits the above “good features”, the inelastic response of the frame need not be assessed.

If the braces or brace connections are not the weakest component, the capacity of the frames should be limited to the capacity of the weakest member/element, if the failure of that member/element constitutes loss of gravity load carrying capacity.

If the brace connections are the weakest component resulting in a rather low lateral force capacity, the frame can be assessed as a moment resisting frame. However, the failure of the brace connections is unlikely to lead to loss of gravity load carrying capacity on their own.

If the ductility demand on the frame due to 100%ULS shaking is significant ($\mu > 1.5$) and the braces are the weakest component, proceed to the next step.

Step 5
Determine the probable base shear capacity of the frame.

The capacity of CBFs can be determined from first principles and member capacity curves provided in Section C6.5.5.
There is an inherent potential for soft-storey formation in CBFs constructed without following the provisions of NZS 3404:1997. For a typical case of a soft storey forming in the bottom storey of a CBF, the probable base shear capacity \(V_{\text{base}} \) of a CBF that is effective both in tension and compression can be determined from the post-buckling capacity of the braces in the bottom storey as:

\[
V_{\text{base}} = \sum_{i=1}^{m} \alpha'_{\text{ci}} N_{\text{ci}} \cos \theta_i
\]

\[\text{C6.36}\]

where:

- \(\alpha'_{\text{ci}} \) = residual strength factor from section C6.5.5.1
- \(N_{\text{ci}} \) = brace probable compression capacity
- \(\theta_i \) = angle between brace and beam at the top end of the brace
- \(m \) = number of braces.

If a soft storey forms in one of the upper storeys of a CBF, the calculated base shear capacity should allow for the resistance mobilised in the braces that are located in the storeys below the soft-storey level before the capacity of the critical brace is exceeded.

Step 6

Determine the displacement capacity of the frame.

The yield displacement \(\Delta_y \) of a CBF may be determined from an elastic analysis of the frame based on the displacements at which the first brace yields in tension (if a tension-only brace) or buckles in compression and a mechanism develops in a storey.

The ultimate displacement capacity of a single-storey CBF or the ultimate inter-storey displacement capacity of a multi-storey CBF that is likely to form a soft storey can be determined from the displacement capacity of the critical brace as:

\[
\Delta_u = \sqrt{(L_b + \Delta_b)^2 - h^2} - L
\]

\[\text{C6.37}\]

where:

- \(L_b \) = length of the critical brace
- \(\Delta_b \) = displacement capacity of the critical brace from Section C6.5.5.1
- \(h \) = storey height
- \(L \) = width of the braced bay

C6.8 Assessment of Steel Framed Buildings

C6.8.1 General

Detailed seismic assessments of steel framed buildings, especially those that are considerably old, should not rely solely on drawings. A condition assessment is recommended as part of the DSA, and may include inspections to determine:

- any deterioration due to environmental effects
- the physical conditions of members and connections
- configuration and presence of members and connections
- load paths through connections, splices and between members, and
• workmanship.

The global assessment of steel framed buildings may be undertaken using either a displacement or force based assessment procedure as appropriate. This section covers factors specific to the analysis and assessment of these buildings. Refer to Section C2 for overall procedures and appropriate global analysis methods.

C6.8.2 Stiffness of frames

The rotational stiffness of column base connections should be taken into account when undertaking an analysis of steel framed buildings. Fixed column base connections are never infinitely stiff, while pinned column base connections have some rotational stiffness.

Rotational stiffness of column base connections can be determined from NZS 3404:1997 as:

\[k_\theta = \frac{kEI_c}{L_c} \]

...C6.38

where:

- \(k = 1.67 \) for fixed base connections
- \(k = 0.1 \) for pinned base connections
- \(I_c \) = second moment of area of the column about the direction under consideration
- \(L_c \) = length of column.

Note:

Experimental tests undertaken on typical seismic resisting system foundations have confirmed that the fixed base rotational stiffness recommendation of NZS 3404:1997 is a reasonable value to adopt (AISC, 2012; Borzouie et al., 2015).

When undertaking an elastic analysis of a steel framed building, rigid end blocks having dimensions equal to one half of the beam depth and one half of the column depth should be used at each beam to column connection of the lateral force resisting frame. The use of one half the depth as a rigid end block instead of the full member depth takes account of the flexibility of the panel zone of the connections.

C6.8.3 Maximum seismic actions

As discussed in Section C6.7 a key step in the assessment of an existing steel framed buildings is to check whether non-yielding members and connections (members and connections located outside potential plastic hinge regions) of the primary structure of the building are protected from undergoing inelastic deformations to ensure an overall ductile response of the building. Comparison of the probable strength of the non-yielding members and connections with actions generated by the overstrength of potential plastic hinge regions determines whether the members and connections outside these hinge regions of the building are protected.

Overstrength derived actions on buildings of low ductility may become higher than the probable capacity of non-yielding members and connections. In such cases non-yielding
members and connections should not necessarily have the capacity to resist overstrength derived actions if there is sufficient margin between actions generated by potential plastic hinge regions and the probable strength of the non-yielding members and connections. Maximum actions on non-yielding members and connections provided below ensure an appropriate level of margin.

C6.8.3.1 Maximum actions on members

Maximum actions on non-yielding members of the primary structure should be limited to actions corresponding to either a nominally ductile or an elastic response depending on the actual building displacement ductility demand (μ_{act}) as follows:

- If $\mu_{act} \geq 1.8$ and the building is ductile – actions corresponding to a nominally ductile response ($\mu = 1.25$) and $S_p = 0.7$
- If $\mu_{act} < 1.8$ and the building is ductile – actions corresponding to an elastic response ($\mu = 1$) and $S_p = 0.7$
- If the building is nominally ductile or elastic – actions corresponding to an elastic response ($\mu = 1$) and $S_p = 0.9$.

C6.8.4 Maximum actions on connections

Similarly to members, overstrength derived actions on non-yielding connections of steel framed buildings should be limited to actions corresponding to either a nominally ductile or an elastic response.

These maximum actions are dependent on the actual displacement ductility demand (μ_{act}) as follows:

- If $\mu_{act} \geq 1.8$ and the building is ductile – actions corresponding to a nominally ductile response ($\mu = 1.25$) and $S_p = 0.7$.
- If $\mu_{act} < 1.8$ and the building is ductile – actions corresponding to an elastic response ($\mu = 1$) and $S_p = 0.7$.
- If the building is nominally ductile – actions corresponding to an elastic response ($\mu = 1$) and $S_p = 0.9$.
- If the building is elastic – actions corresponding to an elastic response ($\mu = 1$) and $S_p = 1$.

However, if the above limits govern instead of capacity derived actions, actions on connections located in ductile or nominally ductile frames and incorporating incomplete penetration butt welds, fillet welds, or bolts and pins as connectors should be determined from 1.2 times the probable capacity of the primary seismic resisting members connected.

Note:

Observations made during the 2010-11 Canterbury earthquake sequence indicate that the above provisions on maximum action on non-yielding members and connections are robust.
C6.8.5 Actions on concentrically braced frames

Non capacity designed CBFs with inelastically responding braces are vulnerable to soft-storey formation. The C_s factor, which needs to be included when determining seismic demand on CBFs in accordance with NZS 3404:1997, accounts for this potential for soft-storey formation and the deterioration in inelastic performance of compression braces with increasing slenderness. The application of the C_s factor limits the ductility demand on CBFs and therefore pushes the seismic response of capacity designed CBFs towards an overall mechanism.

The seismic performance of X-braces of lightweight roof diaphragms is likely to be better than similar vertical CBFs as the roof sheeting system contributes significantly to the stiffness and strength of such diaphragms. However, quantifying this contribution is not straightforward, particularly when the sheeting system has significant openings such as skylights, translucent sheeting, etc.

An X-braced roof diaphragm that remains close to elastic is likely to fulfil its role more reliably than one that yields (noting that there will be a level of earthquake that will cause actions beyond elastic levels). It should be also recognized that a diaphragm that can reliably yield will likely perform better than one that can’t. The key aspects to consider when assessing the reliability of roof diaphragm yielding are:

- Can the location of the “weakest link” in the diaphragm be reliably located?
- Can the yielding of the diaphragm be limited to the “weakest link” and fracture of members or failure of connections be prevented?
- Will the diaphragm still continue to perform its role in its yielded state?
- Will the yielding diaphragm be able to reliably maintain gravity load support?

C6.8.5.1 Vertical concentrically braced frames

The inelastic demand on braces of Category 3 CBFs is expected to be minimal. Therefore, the C_s factor may be taken as 1.0 when assessing single-storey Category 3 CBFs. The C_s factor for multi-storey Category 3 CBFs and all Category 1 and Category 2 CBFs should be determined in accordance with the provisions of NZS 3404: 1997.

C6.8.5.2 Lightweight roof X-bracing

Maximum actions on an X-braced roof diaphragm is principally dependent on the capacity of the lateral force resisting system of the roof and the connections of the roof bracing system as follows:

- A diaphragm that remains essentially elastic under actions limited by development of a mechanism in the lateral force resisting system of the roof – overstrength actions generated by the lateral force resisting system, demand due to out-of-plane response of walls, etc (if there are any).
- If no mechanism exists in the lateral force resisting system of the roof to limit the actions on the diaphragm:
 - actions corresponding to a nominally ductile response ($\mu = 1.25$) and $C_s = 1$ if the diaphragm is capable of developing nominally ductile behaviour only
- actions corresponding to a limited ductile response ($\mu = 3$) and $C_s = 1.35$ if the diaphragm has brace connections capable of yielding the braces in tension at overstrength.

C6.8.6 Concurrency effects

Columns and their foundations that are part of a two-way seismic resisting frame should be assessed against concurrent actions as specified in Clause 12.8.4 of NZS 3404:1997.
References

Erasmus, L.A. (1984). The mechanical properties of structural steel sections and the relevance of these properties to the capacity design of structures. Transactions Vol II, No. 3/CE

Appendix C6A: Typical Pre-1976 Steel Building Systems Used in New Zealand

C6A.1 General

This section gives general guidance on the typical pre-1976 steel building systems used in New Zealand.

Note:
This information is based on published material and details supplied by design engineers.

C6A.2 Moment Resisting Frames

C6A.2.1 Beams

Beams were typically rolled steel joist (RSJ) sections. These are I-sections where the inside face of the flanges is not parallel to the outside face, being at a slope of around 15%. This makes the flanges thicker at the root radius than at the tips.

The flange slenderness ratios of RSJ sections are always compact when assessed to NZS 3404:1997.

These beams were typically encased in concrete for fire resistance and appearance. This concrete contained nominal reinforcement made of plain round bars or, sometimes, chicken wire.

C6A.2.2 Columns

Columns formed from hot-rolled sections

These columns were either hot-rolled steel columns (RSCs) or box columns formed by connecting two channels, toes out, with a plate to each flange. The columns were encased in lightly reinforced concrete containing nominal reinforcement made of plain round bars.

Compound box columns

These columns were also formed from plates, joined by riveted or bolted angles into a box section and encased in concrete. Examples of this type of construction are shown in Figures C6A.1 and C6A.2.
Figure C6A.1: Riveted steel fabrication details, Government Life Insurance Building, 1937
(Wood, 1987)

Figure C6A.2: Riveted steel fabrication details, Government Life Insurance Building, 1937
(Wood, 1987)
C6A.2.3 Beam to column connections

Rivets and bolts

Beam to column connections in the earlier moment frames typically comprised semi-rigid riveted or bolted connections. The RSJ beam flanges were bolted to Tee-stubs or angles bolted to the column flanges or to lengths of RSJ bolted to side extensions of the column plates. An example of the latter is shown in Figure C6A.2.

The RSJ beam web was connected by a double clip angle connection to the column flanges, also as shown in Figure C6A.2.

A simpler version of a semi-rigid connection used in some pre-1976 buildings is shown in Figure C6.12.

These joints generally involved the use of rivets up to 1950 and HSFG bolts after 1960, with a changeover from rivets to bolts from 1950 to 1960.

Arc welding

Beam to column connections from about 1940 onwards were also arc welded. The strength and ductility available from welded connections will need careful evaluation and attention to load path. This topic is addressed in Section C6.6.1 and its importance is illustrated in Figure C6A.3.

This figure is taken from a building that collapsed in the Kobe earthquake of 1995 (while this example is from Japan, the details are relevant to some early New Zealand buildings and the concept is certainly relevant). It shows a failed beam to column minor axis connection, forming part of a moment-resisting frame in that direction. The beam was welded to an endplate which was fillet welded to the column flange tips.

Unlike the connection detail shown in Figure C6A.2, there was no way to transfer the concentrated axial force in the beam flanges induced by seismic moment reliably from the beam into the column. As a result, the weld between endplate and column flange unzipped under the earthquake action.
C6A.2.4 Splices in columns

These typically involved riveted (pre-1950) or bolted (post-1950) steel sections, with the rivets or bolts transferring tension across the splice and compression being transferred by direct bearing.

Figures C6A.1 and C6A.2 show plated box columns connected by riveted angles. Figure C6A.3 shows a bolted UC splice detail in the column; this being a forerunner to the bolted column splice details of HERA Report R4-100 (Hyland, 1999). Such bolted splices generally perform well.

C6A.3 Braced Frames

For the pre-1976 buildings covered by this document, braced frames incorporating steel bracing involved concentrically braced framing (CBF): either X-braced CBFs or V-braced CBFs.

Figure C6A.4 shows an X-braced CBF with relatively light bracing, while Figure C6A.5 shows a V-braced CBF. While both examples are from Kobe, Japan they have similar details to early New Zealand buildings.
Figure C6A.5: V-braced CBF showing damage but no collapse from the 1995 Kobe earthquake
Appendix C6B: Historical Steel Grades and Nominal Strengths

C6B.1 United Kingdom

The nominal material properties of historical UK steelwork are given in Tables C6B.1 to C6B.4. Geometric properties of UK sections can be obtained from publications such as that by Bates (1991).

Table C6B.1: Nominal properties of mild structural steels from the UK (Bates, 1991 and Bussell, 1997)

<table>
<thead>
<tr>
<th>Period</th>
<th>Plate thickness (mm)</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
<th>Ultimate strain (mm/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1906</td>
<td>All</td>
<td>-*</td>
<td>432</td>
<td>-</td>
</tr>
<tr>
<td>1906-48*</td>
<td>All</td>
<td>-*</td>
<td>432</td>
<td>0.2</td>
</tr>
<tr>
<td>1948-68</td>
<td>≤19</td>
<td>247</td>
<td>432</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>>19</td>
<td>232</td>
<td>432</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Note: *A nominal yield strength of 210 MPa may be used for steel manufactured before 1948 in the UK.

Table C6B.2: Nominal properties of mild structural steels from the UK manufactured to BS 4360:1968 (1968-86)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Plate thickness, t (mm)</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
<th>Ultimate strain (mm/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 A, B & C</td>
<td>t ≤ 16</td>
<td>232</td>
<td>402</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>16 < t ≤ 38</td>
<td>224</td>
<td>402</td>
<td>0.22</td>
</tr>
<tr>
<td>40 D & E</td>
<td>t ≤ 16</td>
<td>263</td>
<td>402</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>16 < t ≤ 38</td>
<td>247</td>
<td>402</td>
<td>0.22</td>
</tr>
<tr>
<td>43 A, B & C</td>
<td>t ≤ 16</td>
<td>247</td>
<td>432</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>16 < t ≤ 38</td>
<td>239</td>
<td>432</td>
<td>0.20</td>
</tr>
<tr>
<td>43 D & E</td>
<td>t ≤ 16</td>
<td>278</td>
<td>432</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>16 < t ≤ 38</td>
<td>270</td>
<td>432</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table C6B.3: Nominal properties of high tensile structural steels from the UK (Bussell, 1997 and Bates, 1991)

<table>
<thead>
<tr>
<th>Period</th>
<th>Plate thickness, t (mm)</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
<th>Ultimate strain (mm/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1934-65 (BS 548)</td>
<td>t ≤ 32</td>
<td>355</td>
<td>571</td>
<td>0.14</td>
</tr>
<tr>
<td>1943-62 (BS 968)</td>
<td>t ≤ 19</td>
<td>324</td>
<td>541</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>t > 19</td>
<td>293</td>
<td>510</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Part C – Detailed Seismic Assessment

C6: Structural Steel Buildings

Appendix C6-7

<table>
<thead>
<tr>
<th>Grade</th>
<th>Plate thickness, (t) (mm)</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
<th>Ultimate strain (mm/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 A, B, C, & D</td>
<td>(t \leq 16)</td>
<td>355</td>
<td>494</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(16 < t \leq 38)</td>
<td>347</td>
<td>494</td>
<td>0.15</td>
</tr>
<tr>
<td>55 C & E</td>
<td>(t \leq 16)</td>
<td>448</td>
<td>556</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(16 < t \leq 25)</td>
<td>432</td>
<td>556</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(25 < t \leq 38)</td>
<td>417</td>
<td>556</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table C6B.4: Nominal properties of high tensile structural steels from the UK manufactured to BS 4360:1968 (1968-86)

C6B.2 Australia

Nominal properties of steelwork provided in Australian standard specifications before the introduction of joint AS/NZ standards in 1996 are given in Tables C6B.5 and C6B.6.

Table C6B.5: Nominal strengths of mild structural steels from Australia (Kotwal, 2000)

<table>
<thead>
<tr>
<th>Period</th>
<th>Grade</th>
<th>Plate thickness, (t) (mm)</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1928-56</td>
<td>A1</td>
<td>All</td>
<td>-* 432</td>
<td>AS A1-1928 (Sections)</td>
<td></td>
</tr>
<tr>
<td>1928-37</td>
<td>A1</td>
<td>All</td>
<td>-* 432</td>
<td>AS A1-1928 (Plates)</td>
<td></td>
</tr>
<tr>
<td>1937-55</td>
<td>D</td>
<td>All</td>
<td>216 432</td>
<td>AS A33-1937 (Plates)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>All</td>
<td>193 386</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>All</td>
<td>162 324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955-65</td>
<td>D</td>
<td>(\leq 19)</td>
<td>236 432</td>
<td>AS A33-1955 (Plates)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>(> 19)</td>
<td>228 432</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>All</td>
<td>193 386</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>All</td>
<td>162 324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956-65</td>
<td>A1</td>
<td>(\leq 19)</td>
<td>236 432</td>
<td>AS A1-1956 (Sections)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(> 19)</td>
<td>228 432</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965-71</td>
<td>(t \leq 19)</td>
<td>247 417</td>
<td>AS A149-1965 (Plates & sections)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(19 < t \leq 38)</td>
<td>232 417</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t > 38)</td>
<td>228 417</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965-71</td>
<td>A</td>
<td>(t \leq 19)</td>
<td>232 394</td>
<td>AS A135-1965 (Notch ductile steel - plates)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t > 19)</td>
<td>220 394</td>
<td>(Toughness test requirement)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part C – Detailed Seismic Assessment

C6: Structural Steel Buildings

Appendix C6-8

<table>
<thead>
<tr>
<th>Period</th>
<th>Grade</th>
<th>Plate thickness, (t) (mm)</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>(t \leq 19)</td>
<td>247</td>
<td>425</td>
<td>introduced)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t > 19)</td>
<td>236</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>1966-71</td>
<td>A151</td>
<td>(t < 16)</td>
<td>355</td>
<td>478</td>
<td>AS A151-1966</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16 < t \leq 32)</td>
<td>348</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t > 32)</td>
<td>339</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 6.4</td>
<td>208</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>1971-80</td>
<td>250, 250L0</td>
<td>(t \leq 12.5)</td>
<td>262</td>
<td>414</td>
<td>AS A186-1971 & AS A187-1971 & AS 1204-1972 (Sections & flat bars)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(< 12.5 \leq t \leq 38)</td>
<td>248</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td></td>
<td>350, 350L0</td>
<td>(t \leq 12.5)</td>
<td>359</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.5 < t \leq 38)</td>
<td>345</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WR350</td>
<td>All</td>
<td>345</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9.5 < t \leq 12.5)</td>
<td>262</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.5 < t \leq 19)</td>
<td>248</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(19 < t \leq 38)</td>
<td>232</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>(t \leq 12.5)</td>
<td>310</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t > 12.5)</td>
<td>296</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>(t \leq 12.5)</td>
<td>365</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(t > 12.5)</td>
<td>345</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>(t \leq 12.5)</td>
<td>414</td>
<td>517</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>(t \leq 9.5)</td>
<td>483</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WR350</td>
<td>All</td>
<td>345</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WR400</td>
<td>All</td>
<td>414</td>
<td>517</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WR500</td>
<td>All</td>
<td>483</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td>1973-80</td>
<td>180</td>
<td>>6</td>
<td>180</td>
<td>310</td>
<td>AS A1405-1973 (Plates)</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>>6</td>
<td>210</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>1980-90</td>
<td>200</td>
<td>All</td>
<td>200</td>
<td>300</td>
<td>AS 1204-1980 (Sections, flat bars and plates)</td>
</tr>
<tr>
<td></td>
<td>WR350</td>
<td>All</td>
<td>345</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WR500</td>
<td>All</td>
<td>483</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td>1990-96</td>
<td>200</td>
<td>(t \leq 12)</td>
<td>200</td>
<td>300</td>
<td>AS 3678-1990</td>
</tr>
</tbody>
</table>

A revision of AS 1204-1972 and AS A1405-1973. Grades 180 and 210 plates were replaced by new grade 200 plates. Grades 300, 400 and 500 plates were removed. The rest remained the same as in AS 1204-1972.
Table C6B.6: Nominal strengths of hollow structural steels from Australia

<table>
<thead>
<tr>
<th>Period</th>
<th>Grade</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973-81</td>
<td>200</td>
<td>210</td>
<td>-</td>
<td>AS 1163-1973</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>250</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>360</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C250 and H250</td>
<td>250</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H350</td>
<td>350</td>
<td>450</td>
<td></td>
</tr>
</tbody>
</table>

Note:

*A nominal yield strength of 210 MPa may be used for steel manufactured before 1937 in Australia.
C6B.3 Australia/New Zealand

The first joint Australian and New Zealand structural steel specifications were introduced in 1996. Nominal strengths outlined in these joint specifications are given in Tables C6B.7 and C6B.8.

Table C6B.7: Nominal strengths of mild structural steels to AS/NZS 3678 & AS/NZS 3679

<table>
<thead>
<tr>
<th>Period</th>
<th>Grade</th>
<th>Plate thickness (mm)</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996-now</td>
<td>Same as 3678-1990, but a new grade 450 is added.</td>
<td></td>
<td></td>
<td></td>
<td>AS 3678-1996</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>$t \leq 20$</td>
<td>450</td>
<td>520</td>
<td>AS 3678-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$20 < t \leq 32$</td>
<td>420</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$32 < t \leq 50$</td>
<td>400</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>1996-2010</td>
<td>250</td>
<td>$t \leq 11$</td>
<td>260</td>
<td>410</td>
<td>AS 3679-1996 (Plates)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$11 < t \leq 40$</td>
<td>250</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>$t \leq 11$</td>
<td>320</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$11 < t \leq 17$</td>
<td>300</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$17 < t \leq 40$</td>
<td>280</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>$t \leq 11$</td>
<td>360</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$11 < t \leq 40$</td>
<td>340</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>$t \leq 17$</td>
<td>400</td>
<td>520</td>
<td>AS 3679-2010 (Plates)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t > 17$</td>
<td>380</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>2010-now</td>
<td>Grade 250 and 400 sections removed. A new S0 grade introduced. The rest remained the same as 3679-1996.</td>
<td></td>
<td></td>
<td></td>
<td>AS 3679-2010</td>
</tr>
</tbody>
</table>

Table C6B.8: Nominal strengths of hollow structural steels to AS/NZS 1163-2009

<table>
<thead>
<tr>
<th>Period</th>
<th>Grade</th>
<th>Plate thickness (mm)</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-now</td>
<td>C250</td>
<td>250</td>
<td>320</td>
<td>AS/NZS 1163-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C350</td>
<td>350</td>
<td>430</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C450</td>
<td>450</td>
<td>500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C6B.4 USA and Continental Europe

Material and geometric properties of historical continental sections can be obtained from publications such as those by Bates (1991) and SB4.6 (2007).

Structural steelwork imported from the USA before the 1960s is likely to have a lower yield strength than that imported from the UK (refer to Table C6B.9). Geometric properties of US sections can be obtained from publications such as that by Ferris (1954).

Table C6B.9: Nominal strengths for steels manufactured in the USA for buildings, based on Ferris (1954) and ASCE 41-13

<table>
<thead>
<tr>
<th>Period</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1900</td>
<td>165</td>
<td>248</td>
</tr>
<tr>
<td>1901–08</td>
<td>207</td>
<td>414</td>
</tr>
<tr>
<td>1909–23</td>
<td>193</td>
<td>379</td>
</tr>
<tr>
<td>1924–31</td>
<td>207</td>
<td>379</td>
</tr>
<tr>
<td>1932–60</td>
<td>228</td>
<td>417</td>
</tr>
</tbody>
</table>

C6B.5 Unknown Origin

When the origins of a structural steelwork cannot be confirmed, the default nominal strengths in Table C6B.10 should be used.

Table C6B.10: Nominal strengths for structural steels of unknown origin

<table>
<thead>
<tr>
<th>Time period</th>
<th>Yield strength (MPa)</th>
<th>Tensile strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1948</td>
<td>210</td>
<td>-</td>
</tr>
<tr>
<td>1948–Now</td>
<td>230</td>
<td>-</td>
</tr>
</tbody>
</table>